Expected values - 1/11/06

Binomial distribution (in book)

If random variable X is the number of heads in n tosses of a coin with bias $0 \leq \alpha \leq 1$, it has binomial distribution

$$
p_{X}(k)=\binom{n}{k} \alpha^{k}(1-\alpha)^{n-k}=: B_{n}(k)
$$

Expected value

$$
\begin{aligned}
E(X) & :=\sum_{k=0}^{n} k p_{X}(k) \\
& =\sum_{k=1}^{n} k p_{X}(k) \quad \text { since the } k=0 \text { term contributes zero to sum } \\
& =\sum_{k=1}^{n} k \frac{n!}{k!(n-k)!} \alpha^{k}(1-\alpha)^{n-k} \\
& =\sum_{k=1}^{n} \frac{n!}{(k-1)!(n-k)!} \alpha^{k}(1-\alpha)^{n-k} \quad \text { cancelling with } k! \\
& =n \alpha \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} \alpha^{k-1}(1-\alpha)^{n-k} \quad \text { bring out factors of } n \text { and } \alpha \\
& =n \alpha \sum_{j=0}^{n-1} \frac{(n-1)!}{j!(n-1-j)!} \alpha^{j}(1-\alpha)^{n-1-j} \quad \text { substitute } j=k-1 \text { or } k=j+1 \\
& =n \alpha \sum_{j=0}^{n-1} B_{n-1}(j) \\
& =n \alpha
\end{aligned}
$$

Note how the limits of the sum changed by 1 when we changes k to j. The last step we recognized the sum as the sum of probabilities of the binomial with j heads out of $n-1$ tosses. This is a standard mathematical 'trick' (it works to get the variance too, although this is a bit more messy).

So, a coin of bias $\alpha=0.7$ tossed $n=100$ times has an expected number of heads of $0.7 \times 100=70$, not surprisingly.

Hypergeometric distribution (not in book. . . you're gonna like it!)

Random variable X is the number of red chips in a draw of n without replacement from urn of $N=r+w$ red and white chips.

We start with an identity which can be verified by direct differentiation,

$$
\begin{equation*}
\left[\frac{d}{d \mu}(1+\mu)^{r}\right] \cdot(1+\mu)^{w}=r(1+\mu)^{N-1} \tag{1}
\end{equation*}
$$

Now the coefficient of μ^{k-1} appearing in the first LHS factor is $k\binom{r}{k}$ (here you must binomial expand before taking the derivative). The coeff of μ^{n-k} in the second factor is $\binom{w}{n-k}$. The coeff of μ^{n-1} in the LHS (the product of the two factors) is then the following sum over k (just like your proof of LM3 3.3.10). But this must equal the coeff of μ^{n-1} in the RHS, thus

$$
\begin{equation*}
\sum_{k=0}^{n} k\binom{r}{k}\binom{w}{n-k}=r\binom{N-1}{n-1} \tag{2}
\end{equation*}
$$

Dividing both sides by $\binom{N}{n}$ turns the LHS into what we want,

$$
\begin{align*}
E(X) & =\sum_{k=0}^{n} k \frac{\binom{r}{k}\binom{w}{n-k}}{\binom{N}{n}}=r \frac{\binom{N-1}{n-1}}{\binom{N}{n}} \\
& =r \frac{n}{N}=n \frac{r}{N} \tag{3}
\end{align*}
$$

Since r / N is the fraction of red chips in the urn, which is analogous to α for the binomial, the expectation has exactly the same form as $n \alpha$ for the binomial. How cool is that!

For example, the expected number of red chips when 2 are drawn from an urn of $r=3, w=2$, is $4 / 5$.

How does this change if the chips are drawn with replacement?

