Math 50 Stat Inf: Homework 7-selected SOLUTIONS

due Wed Feb 22

A. i) $L(\mu, \sigma)=c \sigma^{-n} e^{-\frac{1}{2 \sigma^{2}} \sum_{i}\left(y_{i}-\mu\right)^{2}}$
ii) $g(\mu, \sigma \mid y)=c .1 . L(\mu, \sigma)$ so is identical to the likelihood. Don't bother finding c since as I explained, we won't keep track of such overall constants.
iii) First expand the squared term upstairs then bring out what doesn't depend on μ, and write $\sum_{i} y_{i}=n \bar{y}:$

$$
\begin{aligned}
g(\sigma \mid y) & =\int_{-\infty}^{\infty} g(\mu, \sigma \mid y) d \mu \\
& =c \sigma^{-n} \int_{-\infty}^{\infty} e^{-\frac{1}{2 \sigma^{2}}\left(\sum_{i} y_{i}^{2}-2 \mu \sum_{i} y_{i}+n \mu^{2}\right)} d \mu \\
& =c \sigma^{-n} e^{-\frac{1}{2 \sigma^{2}} \sum_{i} y_{i}^{2}} \int_{-\infty}^{\infty} e^{-\frac{n \mu^{2}}{2 \sigma^{2}}+\frac{n \bar{y} \mu}{\sigma^{2}}} d \mu
\end{aligned}
$$

so to use the integral I gave you we set $a=\sqrt{n} / \sigma$ and $b=-n \bar{y} / \sigma^{2}$. You then use the Gaussian integral $\int_{-\infty}^{\infty} e^{-\left(a^{2} x^{2} / 2\right)-b x} d x=(\sqrt{2 \pi} / a) e^{b^{2} / 2 a^{2}}$, which can be proven simply by completing the square. So marginal posterior becomes

$$
\begin{align*}
g(\sigma \mid y) & =c \sigma^{-n} e^{-\frac{1}{2 \sigma^{2}} \sum_{i} y_{i}^{2}} \cdot c \sigma e^{\frac{n^{2} \bar{y}^{2}}{\sigma^{4}} \cdot \frac{\sigma^{2}}{2 n}} \\
& =c \sigma^{1-n} e^{-\frac{1}{2 \sigma^{2}}\left(\sum_{i} y_{i}^{2}-n \bar{y}^{2}\right)} \\
& =c \sigma^{1-n} e^{-\frac{1}{2 \sigma^{2}}\left(\sum_{i}\left(y_{i}-\bar{y}\right)^{2}\right)} \tag{1}
\end{align*}
$$

In the last step we used $\sum_{i}\left(y_{i}-\bar{y}\right)^{2}=\left(\sum_{i} y_{i}^{2}\right)-n \bar{y}^{2}$.
iv)

$$
\begin{align*}
\frac{d}{d \sigma} \ln g(\sigma \mid y) & =\frac{d}{d \sigma}\left(-(n-1) \ln \sigma-\frac{1}{2 \sigma^{2}} \sum_{i}\left(y_{i}-\bar{y}\right)^{2}\right) \\
& =-\frac{n-1}{\sigma}+\frac{1}{\sigma^{3}} \sum_{i}\left(y_{i}-\bar{y}\right)^{2} \tag{2}
\end{align*}
$$

Setting this to zero gives the MAP peak at $\sigma^{2}=\frac{1}{n-1} \sum_{i}\left(y_{i}-\bar{y}\right)^{2}$, the same as the familiar unbiased ML estimate for variance.
B. Bayesian prediction for bus waiting time. [No matlab].
i)

$$
h\left(y \mid y_{1}\right)=\int_{0}^{\infty} f_{Y}(y \mid \theta) g\left(\theta \mid y_{1}\right) d \theta=\int_{0}^{\infty} \theta e^{-\theta y} \cdot y_{1}^{2} \theta e^{-\theta y_{1}} d \theta=y_{1}^{2} \int_{0}^{\infty} \theta^{2} e^{-\left(y+y_{1}\right) \theta} d \theta
$$

which is a gamma integral giving $h\left(y \mid y_{1}\right)=2 y_{1}^{2} /\left(y+y_{1}\right)^{3}$.
ii) ML estimate is at $\theta_{e}=1 / y_{1}$ (by setting θ-deriv of likelihood to zero). So frequentists predictive pdf is $h\left(y \mid y_{1}\right)=f_{Y}\left(y \mid \theta_{e}\right)=-\left(1 / y_{1}\right) e^{-y / y_{1}}$.
iii) $y_{1}=10$ mins. In each case $p(Y \geq 60 \mathrm{mins})=\int_{6} 0^{\infty} h\left(y \mid y_{1}\right) d y$. Bayesian gets $y_{1}^{2} \int_{7} 0^{\infty} u^{-3} d u=$ $(1 / 7)^{2}=0.0204$, whereas frequentist gets $e^{-6}=0.00248$. [The $\tan ^{-1}$ clue was actually wrong sorry about that!]
iv) The Bayesian allows the chance that the rate is actually much slower than one every 10 mins, so its predictive pdf has a 'longer tail' (it's power-law not exponential) than the freuqentist predicitive pdf. This makes long wait times much more likely. I think you'll agree this Bayesian approach is closer to reality - the datum $y_{1}=10$ mins could have been unrepresentitatively short!

