
Math 50 Stat Inf: Homework 7—selected SOLUTIONS

due Wed Feb 22
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ii) g(µ, σ|y) = c.1.L(µ, σ) so is identical to the likelihood. Don’t bother finding c since as I explained,
we won’t keep track of such overall constants.

iii) First expand the squared term upstairs then bring out what doesn’t depend on µ, and write
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so to use the integral I gave you we set a =
√

n/σ and b = −nȳ/σ2. You then use the Gaussian
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, which can be proven simply by completing the
square. So marginal posterior becomes
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In the last step we used
∑

i(yi − ȳ)2 = (
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i y2
i ) − nȳ2.

iv)
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Setting this to zero gives the MAP peak at σ2 = 1
n−1

∑

i(yi − ȳ)2, the same as the familiar
unbiased ML estimate for variance.

B. Bayesian prediction for bus waiting time. [No matlab].

i)

h(y|y1) =

∫

∞

0

fY (y|θ)g(θ|y1)dθ =
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∞
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θe−θy · y2
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which is a gamma integral giving h(y|y1) = 2y2
1/(y + y1)

3.

ii) ML estimate is at θe = 1/y1 (by setting θ-deriv of likelihood to zero). So frequentists predictive
pdf is h(y|y1) = fY (y|θe) = −(1/y1)e

−y/y1 .
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iii) y1 = 10 mins. In each case p(Y ≥ 60mins) =
∫

6
0∞h(y|y1)dy. Bayesian gets y2

1

∫
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0∞u−3du =

(1/7)2 = 0.0204, whereas frequentist gets e−6 = 0.00248. [The tan−1 clue was actually wrong -
sorry about that!]

iv) The Bayesian allows the chance that the rate is actually much slower than one every 10 mins, so its
predictive pdf has a ‘longer tail’ (it’s power-law not exponential) than the freuqentist predicitive
pdf. This makes long wait times much more likely. I think you’ll agree this Bayesian approach is
closer to reality—the datum y1 = 10 mins could have been unrepresentitatively short!


