Math 50 Stat Inf: Homework 7

due Wed Feb 22

First few are exam review so focus on them before Monday.
$5.3: 11$,
12 (both review, but very important)
5.5: 1 (review).
A. Samples $\left\{y_{i}\right\}, i=1 \ldots n$ are taken from a normal with parameters μ and σ. Let's do Bayesian inference on the variance. This is also relevant practise for the exam. [No matlab].
i) Write down the likelihood function $L(\mu, \sigma \mid y)$. This is exactly what you plotted in HW5. Replace any constant (parameter-independent) terms by an overall constant; we will not bother keeping track of such constants.
ii) Assuming a uniform (improper) prior on (μ, σ), write the posterior $g(\mu, \sigma \mid y)$.
iii) Find the marginal posterior pdf on σ alone: $g(\sigma \mid y)=\int_{-\infty}^{\infty} g(\mu, \sigma \mid y) d \mu$. This corresponds to inference on σ with μ unknown. [Hint: This is the trickiest part. You may leave an unknown constant σ-independent factor out front. You'll need the Gaussian integral $\int_{-\infty}^{\infty} e^{-\left(a^{2} x^{2} / 2\right)-b x} d x=$ $(\sqrt{2 \pi} / a) e^{b^{2} / 2 a^{2}}$, which can be proven simply by completing the square]
iv) Take $(d / d \sigma) \ln g(\sigma \mid y)$ to find the maximum a-posteriori estimate (i.e. peak of the posterior pdf) for σ. It should be familiar-where have you seen it? Note how the skewness of the $L(\mu, \sigma)$ peak you plotted in HW5 made the peak of the marginal on σ move from the ML joint estimate of (μ, σ).
B. Bayesian prediction for bus waiting time. [No matlab].
i) Solve part D) of Worksheet $2 / 13 / 06$ to get the predictive $\operatorname{pdf} h\left(y \mid y_{1}\right)$ of a future sample drawn from the bus wait-time pdf. As you can see the Bayesian method is to follow the laws of probability by averaging (marginalizing) over all the possible biases θ weighted according to their posterior pdf deduced from the data y_{1}. Have you seen the resulting pdf recently?
ii) Write down the predictive pdf for y following the 'frequentist' (non-Bayesian) approach of finding a single ML estimate then using that to predict.
iii) Practical consequences. You start taking a new bus route with unknown arrival rate θ (use a uninformative prior). Today (day 1) you wait $y_{1}=10 \mathrm{mins}$. Let Y be tomorrow's wait time. Compute the Bayesian's and frequentist's predictions for $p(Y \geq 60 \mathrm{mins})$. [Hint: you should be able to integrate both on paper-think about $\tan ^{-1}$.]
iv) Discuss why they differ. Which would you trust?
6.2 : 1 (careful whether one- or two-sided),
2.
6.3 : 1 ,
6.
6.4: 1,

3 ,
7.

