Math 50 Stat Inf: Homework 6

due Wed Feb 15

I have created some better problems than ones in the book to teach you this week's stuff: properties of estimators and introduction to Bayesian parameter fitting (estimation). Note you can do question C, the only 'matlab' one, using material up to section 5.7 only.
5.4: 18 (due to symmetry you do not even need any integrals)
A. Look back to question B. 3 from HW2. You used the estimator $\hat{p}=\bar{X}=\sum_{i=1}^{N} X_{i}$ for the Poisson parameter, with $N=1000$ data. Compute the standard deviation $\sqrt{\operatorname{Var} \hat{p}})$ using the theory you've learned since then. What were the z-values of your sample(s) of \hat{p} ?
B. Recall $\hat{\sigma^{2}}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}$ was an unbiased estimator for the variance of data given n samples from a normal model pdf, when the μ was not known. Assume instead μ is known; then is the estimator $\hat{\sigma^{2}}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\mu\right)^{2}$ biased? (Use the method of lecture to find the bias). If so, fix it.
5.5 : 2 (key),

3 ,
4,
5.
5.7: 1 (review),

2 (using things you already know about combining normal variables).
C. So far you're getting the impression that the sample mean \bar{Y} is a 'good' (unbiased, minimum-variance, consistent) estimator of the mean of a distribution (e.g. uniform, poisson, normal pdfs). Let's shake that up a bit with the 'lighthouse problem'. A lighthouse sits at location $(-1, \mu)$ in the plane and sends out pulses of light, at random angles uniformly distributed over $[-\pi / 2, \pi / 2]$, which travel in straight lines then are detected where they hit the y-axis (the 'shoreline') at locations y_{i}. (the 'shoreline'). Your job is to estimate the location μ using n samples $\left\{y_{i}\right\}, i=1 \cdots n$.
i) With $\mu=0$ generate a list of $n=10^{4}$ samples of y_{i} (you'll need to use elementary trigonometry). Histogram them with bins of width 0.1 over a suitable y range. They should have a Cauchy pdf $f_{Y}(y ; \mu)=1 /\left[\pi\left(1+(y-\mu)^{2}\right)\right]$.
ii) Plot the sample mean \bar{y} vs sample size n for a sequence of sizes $n=10,10^{2}, \ldots, 10^{7}$. [Hint use a \log scale for n, via semilogx in matlab].
iii) Is the estimate converging to the true $\mu=0$? Comment. Why do you think Chebychev's law of large numbers breaks down?
iv) Given $n=10^{2}$ samples, plot the likelihood function $L(\mu)$ over the domain $-2 \leq \mu \leq 2$. Comment on the constistency of the ML estimate vs the sample mean.
D. A coin (Bernoulli pdf) of unknown bias α gives the independent samples $\left\{X_{i}\right\}=\{0,0,1,1,1,1,0,1,1,1\}$. Find the likelihood function $L(\alpha \mid X)$.
i) Assuming a uniform prior $p(\alpha)$ in $[0,1]$, find the posterior $p(\alpha \mid X)=$ const. $L(\alpha \mid X) p(\alpha)$. [Hint: normalizing the posterior is a simple way to get the const].
ii) Assume instead you already believe the coin has a low α so you use a beta pdf with $r=2, s=4$ (see Ex. 5.8.2). Now find the posterior.
5.8: 1 (assume a single sample k is the measured data, so your posterior will depend on that k. You may want to consider only the θ and $(1-\theta)$ factors, then normalize at the end),

