Math 50 Stat Inf: Homework 3

due Wed Jan 25

Problems now from LM4 unless indicated. I think you will find a lot of quick questions here, so don't be discouraged by the number.
3.7 : 40.
"Suppose that each of two urns has four chips numbered 1 through 4. A chip is drawn from the first urn and bears the number X. That chip is added to the second urn. A chip is then drawn from the second urn. Call its number Y. a) Find $p_{X, Y}(x, y)$, b) Show that $p_{X}(k)=p_{Y}(k)=1 / 4, k=1,2,3,4$. c) Show that X and Y are not independent."
3.8: 1 (please explain how the key algebra step works in a), [a is same as LM3 3.7.17, b asks the same question for $\left.p_{X}(k)=p_{Y}(k)=(1-p)^{k-1} p, k=1,2, \ldots\right]$
2 (easy but elegant) [LM3 3.7.19]
7a (figuring limits within which f 's are 1 is hard)
"Find the pdf of $X Y$ for $f_{X}(x)=1,0 \leq x \leq 1$, and $f_{Y}(y)=1,0 \leq y \leq 1$, where X and Y are independent."
9 (you may be fed up of integrating $x^{2} e^{\alpha x}$, if so look up a table of integrals).
"Suppose X and Y are indep with $f_{X}(x)=x e^{-x}, x \geq 0$ and $f_{Y}(y)=e^{-y}, y \geq 0$. Find the pdf of Y / X."
$3.9: 3$,
"Suppose $f_{X, Y}(x, y)=(2 / 3)(x+2 y), 0 \leq x \leq 1,0 \leq y \leq 1$. Find $E(X+Y)$."
6 ,
"Suppose the the daily closing price of stock goes up an eihgth of a point with probability p and down with probability q, where $p>q$. After n days how much gain can we expect the stock to have achieved? Assume that the daily price fluctuations are independent events."

10 (ignore the hint),
"Suppose that X and Y are both uniformly distrubted over the interval $[0,1]$. Calculate the expected value of the square of the distance of the random point (X, Y) from the origin; that is, find $E\left(X^{2}+Y^{2}\right)$."
16 (careful with variance) [LM3 3.13.5]
3.10 : 1 [LM3 3.8.1],

3 [LM3 3.8.3],
8 [LM3 3.8.8]. [Solve the problem on paper first. Then use matlab or some other graph-plotting package to print these three graphs on the same axes. Note Y_{2} just has the pdf f_{Y}; don't ask me why they picked 2 here. Hint for matlab: set up a set of y values first, $y=0: 0.01: 1$ Then compute the list of f values from this, e.g. if $f(y)$ were y^{2}, then you'd do $\mathrm{f}=\mathrm{y} .{ }^{\wedge} 2$. Note the . ^ operator takes each element of the list y to the desired power. Then $\operatorname{plot}(f, y)$, and hold on; lets you overplot on same axes. Consult matlab guides or ask if stuck].
3.11 : 2,
"Supose a die is rolled six times. Let X be the total number of 4's that occur and let Y be the numb er of 4's in the first two tosses. Find $p_{Y \mid x}(y)$."
5 [LM3 3.9.6],
16,
"Suppose X and Y are distributed according to the joint pdf $f_{X, Y}(x, y)=(2 / 5)(2 x+3 y), 0 \leq x \leq 1$, $0 \leq y \leq 1$. Find a) $f_{X}(x)$, b) $f_{Y \mid x}(y)$, c) $P(1 / 4 \leq Y \leq 3 / 4 \mid X=1 / 2)$, d) $E(Y \mid x)$."
19 [LM3 3.9.16]
4.2 : 1 [LM3 same],

5 [LM3 same],
10 [LM3 same],
17 [LM3 4.2.16] (easy).

