Math 50 Stat Inf: Homework 2

due Wed Jan 18

Problems from LM3 unless indicated [with LM4 ref given or typed out].

3.2: 1 [LM4 3.3.1a].

3.3: 18 (more historical anecdotes. Hint: it's easier to write the probability of the event not happening) [LM4 3.2.17].
LM4 3.3.7: "Suppose a particle moves along the x-axis beginning at 0 . It moves one integer step to the left or right with equal probability. What is the pdf of its position after 4 steps?" (This is called a random walk; compare LM3 3.3.20).
3.4: 1 :
"Graph the cdf corresponding to the random variable whose pdf is $p_{X}(k)=1 / 3, k=1,2,3$."
8 [LM4 3.4.8], 10 [LM4 3.4.10 - bingo!] Also use the cdf to state the median of the distribution.
3.10: 3 [LM4 3.5.4], 8 [LM4 3.5.12], 16 [LM4 3.5.17].
3.11: 8 [LM4 3.5.30].

3.12: 1 [LM4 3.6.1], 2 [LM4 3.6.2].

A. Calculate $\operatorname{Var}(X)$ if $f_{X}(x)=(1 / \lambda) e^{-x / \lambda}$ for $x>0$. [Hint: you'll need integration by parts to remove all powers of $x]$.
B. Use the computer to simulate the distribution of X, the number of heads in 100 tosses of a biased coin with $\alpha=p(H)=0.7$, as follows.

1. Generate a list of $N=1000$ samples k from X. To help you, I'll dissect some bits of the useful commands I gave you in HW1. rand $(100,10000)$ fills a rectangular array 100 down by 10000 across with random numbers in $[0,1]$. The logic operation >0.5 converts this to an array of 1 or 0 based on whether each element exceeded 0.5 . Given a rectangular array, the operation sum sums down each column to leave you a row vector. You can get help on any command using e.g. help sum.
2. Plot, then print, a histogram of these samples. Use a bin width of 1. [Hint: see HW1].
3. Estimate $E(X)$ by taking the average value of your list. By roughly how much does your estimate deviate from the true $E(X)$? You may want to repeat the process to get a better idea of the deviation. (We will learn why when we get to estimators).
3.5: 3 [LM4 3.7.3], 4 [LM4 3.7.4], 10 [LM4 3.7.11],
3.6: 5 [LM4 3.7.43].
