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INTRODUCTION

Neurons, the cells that make up the brain, form the basis of sensory perception in 

humans, and perception in turn plays a large role in many important life processes and 

decision-making. These include both those that take place over large time scales, such as the 

daily circadian cycle, as well as quick, one-time actions, such as identifying objects in the 

field of vision. Receiving, processing, and acting on stimuli is a complex procedure, and it 

requires networks of neurons to work together in some kind of synchronized fashion. For a 

neural network, synchronization entails the neurons in the network firing or releasing 

chemicals in the same oscillatory phase.

An important question in the study of neural networks is whether synchronization of 

neurons is stable, or whether states of partial synchronization or non-synchronization are 

stable. Given that individual neurons undergo impulses periodically in response to a 

stimulus and that neurons within a network are linked in terms of phase, the neurons are 

modeled as phase oscillators that each have a natural frequency yet are also governed by the 

force of coupling with other neurons in their network; this coupling causes the neurons to 

tend more towards synchronization with other neurons in the network in terms of their firing 

while the neurons’ natural frequencies tend to resist this synchronization.

BASIC MODEL

The baseline model used here to analyze the periodic impulses of neurons as phase 

oscillators is the Kuramoto Model. This model is θ𝑖
′ = ω𝑖 + σ𝑗=1

𝑁 𝐾𝑖𝑗𝑠𝑖𝑛(θ𝑗 − θ𝑖), (i = 

1,2,…, N), where θ𝑖 represents the displacement from equilibrium of a neuron, ω𝑖 is the 

neuron’s natural frequency (which may not be identical to that of other neurons), and N is 

the number of neurons in the network. Further, K represents the coupling matrix, so Kij ≥ 0 

is some coupling constant between neurons i and j, where larger values of Kij imply stronger 

coupling between the two neurons. 

Kuramoto further developed this model by introducing an order parameter, r(t), where 

0≤r ≤1 and values of r closer to 1 mean that the network of neurons are more synchronized 

while r=0 means that all neurons oscillate at their individual natural frequencies, which 

implies that they are not synchronized. The parameter r(t) satisfies the equality         

𝑟𝑒𝑖ψ =
1

𝑁
σ𝑗=1
𝑁 𝑒𝑖θ𝑗. Kuramoto then used this order parameter to modify the original model 

into a slightly simpler form: θ𝑖
′ = ω𝑖 + 𝐾𝑟𝑠𝑖𝑛 ψ − θ𝑖 ; i = 1,2,…,N. In this model, K is 

defined as K = N*Kij. Though the model is still nonlinear in θ, the modifications do allow 

the summation term to be removed. It is important to note that defining K in this way is 

based on the assumption that coupling among neurons is in the form of mean-field coupling, 

which means that all the neurons in the network have the same degree of coupling to each 

other and are coupled to a common average phase, rather than each pair of neurons having a 

unique coupling strength and being coupled individually to each other neuron. The shared 

coupling strength (K) is defined to be equal to the mean coupling strength of individual 

pairs of neurons multiplied by N, the number of neurons in the network.

ASSUMPTIONS

As mentioned above, it is assumed that coupling among neurons takes the form of mean-

field coupling in particular, as opposed to other forms of coupling such as short-range 

couplings and hierarchical couplings. It makes sense to assume mean-field coupling because 

neural functions are undertaken by relatively large regions of the brain or even disparate 

regions of the brain, and it is most efficient for the firing of the neurons that play a role in a 

given function to be coupled to some average value. In addition, it is assumed that the 

number of neurons N→∞. Again, this makes sense as an assumption because there are 

approximately 100 billion neurons in the human brain, so even if only a small portion of the 

brain is considered as part of a network, there are still likely tens of millions of neurons in 

that network. A final assumption is that the natural frequencies ω𝑖 of the neurons are 

distributed by a probability density function with a mean of ω0, and the natural frequency of 

any given neuron is random according to that probability density function.

CONNECTING BACK TO THE KURAMOTO MODEL

Returning to the basic Kuramoto model with mean-field coupling ( θ𝑖
′ = ω𝑖 + 𝐾𝑟𝑠𝑖𝑛 ψ − θ𝑖 ; 

where i = 1,2,3,…,N), the results of the bifurcation analyses clearly fit with this model. It is trivial 

to see that when K = 0 and the frequency distribution of natural frequencies is unimodal, which 

implies that g’’(0) < 0, θ𝑖
′ = ω𝑖 and each neuron will oscillate at its own natural frequency. 

However, this is not the case when g’’(0) > 0 (a bimodal or multimodal distribution), but the 

frequency distribution of neurons’ natural frequencies is commonly thought to be unimodal. In 

addition, when r = 0, reflecting an incoherent state, again θ𝑖
′ = ω𝑖 and neurons will oscillate at 

their natural frequencies, with coupling not being a factor.

On the other hand, as K becomes greater than Kc (if g’’(0) < 0) or less than Kc (if g’’(0) > 0) 

and the value of K moves further from Kc, the bifurcation demonstrated that the partially 

synchronized state becomes more synchronized. This makes sense in terms of the differential 

equation because as the magnitudes of K and r become larger, the coupling term (Krsin ψ − θ𝑖 ) 

tends to dominate over the natural frequency term, meaning that the neurons will tend to be more 

synchronized to the average phase of the network.

Lastly, it should be pointed out that the nonlinear sine term in the Kuramoto equation gives rise 

to the potential for many local critical points. In fact, values of θ𝑖 that are critical points are those 

that satisfy the equation -ωi/(Kr) = sin(ψ - θi), so the system will have many critical points as long 

as the ratio -ωi/(Kr) satisfies -ωi/(Kr) < 1.

CONCLUSIONS AND FURTHER QUESTIONS

The main conclusion from the studies undertaken here as they apply to the oscillations of 

neurons in humans is that for frequency distributions g(ω) of neurons’ natural frequencies that 

satisfy g’’(0) < 0 (unimodal distributions), coupling strengths that are greater than some critical 

coupling strength will produce at least partial synchronization in the oscillations of neurons. If the 

mean-field coupling strength is sufficiently weak, then neurons will tend to oscillate at their 

natural frequencies, resulting in incoherence. In short, stronger coherence is produced by stronger 

coupling among neurons in a network. In neural networks with unimodal natural frequency

distributions, the partially synchronized state is stable, meaning that for neurons with natural 

frequencies sufficiently close to the average, the average phase of neurons in the network is an 

attractor. Note that the qualifier “sufficient” depends on the network’s overall coupling strength.

As discussed in the introduction, synchronization is crucial in numerous neural functions that 

involve receiving and processing stimuli, as well as associative memory. A major question then

becomes precisely how, on a chemical level, neurons create and maintain these coupling 

connections. In addition, further advancements could be made by performing experiments to 

determine an accepted range of values for Kc (which likely depends on the number of neurons 

actively firing at once), a precise idea of what the natural frequency distribution, g(ω), of neurons 

is, and a model for the average phase of a network of neurons as a function of time. The latter will 

potentially be inseparable from the Kuramoto model in that the average phase changes in response 

to changes in the phase of individual neurons, which in turn change in response to coupling 

interactions.

In terms of further work in the mathematical modeling of neuronal oscillations, one 

shortcoming of Kuramoto’s model is that it seems to only take into account innate coupling 

strength, as opposed to coupling connections that may be strengthened due to some sort of

neurological memory. This could occur if repeated synchronized firing of groups of neurons tends 

to strengthen coupling among those neurons. 
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BIFURCATION ANALYSIS

Acebron et al. determined that r ~
−16(𝐾 −𝐾𝑐)

𝜋𝐾𝑐
4𝑔′′(0)

, where g(ω) is a general frequency 

distribution for the neurons’ natural frequencies and 𝐾𝑐 is some critical value of K at which 

the system bifurcates between coherence (synchronization) and incoherence of neuronal 

oscillations. Thus, it is clear that if K = 𝐾𝑐, then r = 0, which by definition means a state of 

non-synchronization (incoherence), in which all neurons oscillate at their natural 

frequencies. Since the value of r is of greatest interest here (since r is the determinant of the 

state of coherence of the network) and K is the bifurcating parameter, it will be most useful 

to analyze graphs of r vs. K for various values of K and g’’(0). For simplicity, we assume 

that 𝑔′′(0) = 1 even though this may not necessarily always be the case; the assumption 

just makes use of the fact that only the sign of g’’(0) matters for the nature of the 

bifurcation. The magnitude of g’’(0) merely affects the magnitude of r. In addition, an 

arbitrary value is taken for 𝐾𝑐 (in this case, 𝐾𝑐 = 20); similarly, this does not affect the 

nature of the bifurcation, but rather merely shifts its location to higher or lower values of K. 

Note that the negative case (r < 0) of the asymptotic value of r can be ignored since r is 

defined to be in the range 0 ≤ r ≤ 1. As expected, the state of a neural network, in terms of 

synchronization of neurons, bifurcates at Kc. Specifically, for a fixed value of Kc, the 

bifurcation is supercritical for g’’(0) < 0 and subcritical for g’’(0) > 0. In the supercritical 

case (g’’(0) < 0), the corresponding graph shows an equilibrium state of partial 

synchronization (0 < r < 1) is stable for K > Kc, while in the subcritical case (g’’(0) > 0), the 

graph demonstrates that the partially synchronized state is an equilibrium for K < Kc. On the 

other hand, when K < Kc in the supercritical case, the incoherent state (r = 0) is an 

equilibrium; in the subcritical case, the incoherent state is an equilibrium when K > Kc. In 

both cases, this is due to the fact that the value of the fraction inside the square root that is 

asymptotically equal to r is negative, so r is equal to some complex number with Re(r) = 0.

Regarding the stability of these states, as Acebron et al. point out, the incoherent state is 

stable for K < Kc in the supercritical case, as is the partially synchronized state in the 

supercritical case (for K > Kc). However, in the subcritical case, the non-synchronized state, 

where K > Kc, is unstable, and the state of partial synchronization is also unstable (K > Kc).

It is important to note that partial synchronization refers to a state in which some of the 

neurons are oscillating at the same phase, which is the average phase of the entire network, 

while other neurons are oscillating incoherently. In particular, the neurons with phases that 

do not become locked to the average phase of the network are those that are on the extremes

of the tails of the distribution (g(ω)) of natural frequencies. Of course, the stronger the 

coherence (the more neurons that are synchronized), the closer the value of r will be to 1, 

which reflects the fact that more neurons are becoming phase locked to the average phase.

EXAMPLE OF A FREQUENCY DISTRIBUTION

The main illustrative example of a frequency distribution that Kuramoto used was 

𝑔 ω =
𝛾

π(𝛾2+ω2)
. For that case, he was able to find an exact result for r, r = 1 −

𝐾𝑐

𝐾
. In 

addition, using the fact that Kc = 
2

𝜋𝑔(0)
, it can be determined that Kc = 2𝛾 (𝛾 represents the 

“width” of the frequency distribution). This particular 𝑔 ω falls under the supercritical 

case (g’’(ω) < 0 because g’’(ω) = 
−2

𝜋𝛾3
and 𝛾 > 0), so it makes sense that Re(r) = 0 for K < 

Kc, and for K > Kc, 0 < r < 1, indicating partial synchronization.


