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Introduction

Coral Reef Population Analysis

We constructed a three-species predator-prey model using the Lotka-Volterra predator-
prey models. We chose for the intermediate species (the parrotfish) to have an attack rate
with a saturating functional response given by Holling’s disk equation (Holling 1959). Let
R be the abundance of coral colonies, let N be the abundance of parrotfish, which feeds on
coral, and let P be the abundance of a piscavore, which feeds on parrotfish.
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where r(t) is the coral growth rate, K is the coral carrying capacity, ais the feeding rate of
parrotfish on coral, h is the amount of time it takes for a parrot fish to consume one coral
colony when coral are abundant, bis the coral to parrotfish conversion rate, d is the death
rate of parrotfish, ↵ is the attack rate of the predator on parrotfish, � is the parrotfish to
predator conversion rate, and � is the predator death rate. To maintain biological feasibility
we restrict the system to P , N , R � 0.

Let the initial conditions of the system be given by:

P (0) = P0, N(0) = N0, R(0) = R0
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Parameters

Coral reefs are unique habitats that host an enormous diversity of species and play
an important role in the marine ecosystem [1]. In recent years, rising sea temperatures
have caused widespread coral bleaching events that result in high coral mortality. As a
result, coral reefs are also one of the most vulnerable habitats on the planet, with more
than one-third of reef-building species at elevated risk of extinction [2]. Thus, being
able to predict coral reef ecosystem collapse is critical to preserving this crucial
habitat. We constructed a three-species predator-prey model using the Lotka-Volterra
predator-prey models. We chose for the intermediate species (referred to as the
consumer) to have an attack rate with a saturating functional response given by
Holling’s disk equation [3].

System of Equations

Equilibria Stability

We considered a 10km2 reef and assumed the average coral colony size was 1m2.
The maximum coral carrying capacity of the reef occurs at 100% coral cover, which is
equivalent to 108 coral colonies. Coral extension rates are estimated to be between
0.003 m/yr and 0.0004 m/yr [4]. We chose the upper estimate of 0.003 m/yr [5]. For a
coral colony 1m2 in diameter, 0.003 m/yr of outward growth from its perimeter is
0.012 m2/yr or 0.012 individuals/yr. So, r0 was estimated as 0.012 individuals/yr.

To determine r(t), we assumed that r(T) = 0 when T = Tcrit, where T is
temperature. We used a coral bleaching threshold of 1˚C sea surface temperature
anomaly (SSTA) was used [6]. We then assumed that coral attains its maximum
growth rate for SSTA less than or equal to 0.75˚C. Our estimate for r(T) was then:

We used SSTA data from Nino Region 4, located in the equatorial Western Pacific
Ocean, a hotspot for coral reefs. SSTA were calculated using the Extended
Reconstructed Sea Surface Temperature version 4 [7] and accessed from the National
Oceanic and Atmospheric Administration (NOAA) website [8].

We estimated the trend in temperature anomaly over time and averaged the
maximum values of SST anomalies during El Nino events to get a sinusoidal function
with period 4 year [9]. The final result was:
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K is the carrying capacity of the producers, and K >> 1.
b, � O(0.1) (could you fill out the rest? I don’t know the approximate scales of the
parameters. Also would appreciate adding the approximation and explanation for h
the variable.)
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r0 � 16r0(T � 0.75)2 T > 0.75
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First, we nondimensionalized the system of equations using the following dimensionless
variables:
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The nondimensionalized equations were:
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with initial conditions x(0) = 1, y(0) = 1, z(0) = 1.
At stable points, x0 = y0 = z0 = 0, which lead to the following conditions:
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Then, we consider the following cases:
If we choose the first choice of every condition,

x⇤ = y⇤ = z⇤ = 0 (case 1)

This equilibrium represents ecosystem collapse. If we choose the second choice of the
third condition,

x⇤ = y⇤ = 0, z⇤ =
K

R0
(case 2)

At this equilibrium, coral colonies survive, but don’t support high trophic levels.
If we choose the second choice of the second condition, we can’t let z⇤ = 0, since x⇤

would be negative by the second condition. Then, we choose the second choice of the
third condition.

x⇤ = 0, y⇤ = r(t)
b
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At this equilibrium, the reef is only able to support one trophic level.
Finally, if we choose the second choice of the first condition, we are forced to choose
the second choice of the second condition, and for similar reason as above, we can’t let
z⇤ = 0. Then, the only remaining equilibrium is:
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This is the case where the coral reef supports the complete food chain.

For case 3, the system was numerically analyzed for t = 0 to t = 2×108 assuming r(t) 
= r0 (Fig. 1a). The system moved slower than is biologically plausible. The system is 
unstable. When r(t) varies, the system collapses on the scale of t = 0 to t = 2x104

(Fig. 1b). The system moves faster than in the unforced case, but the timescale 
remains biologically implausible. 

For case 4, the system was numerically analyzed for t = 0 to t = 20 both with and 
without the forcing term (Fig. 2a, 2b). P and N move quickly relative to R, so the 
dynamics of R are negligible. Adding forcing changes nothing.

Fig.	1a Fig.	1b

Fig.	2a Fig.	2b

The model does not match biological expectations. Either more sophisticated 
parameter estimates or models are needed. The slow timescale at which the coral 
dynamics occur is likely due to the combination of small r0 and large K. Because the 
choice of K was influenced by the magnitude of r0, higher values of r0 will likely result 
in a more realistic model. There is reason to believe that our estimate of r0 is too low. 
Estimates of coral extension rate are likely insufficient to model coral growth. More 
sophisticated, simulation-based models use a mixture of coral extension rate and coral 
recruitment rates in order to model coral populations, which results in a larger r0 than 
extension rate alone [12]. This added complexity is likely necessary to generate 
biologically meaningful results.

Conclusion
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Parrotfish are important to the maintenance of reef ecosystems, contributing
substantially to coral bioerosion and helping to regulate levels of algae [10,11]. The
per capita consumption of coral by certain species parrotfish has been estimated to be
as high as 1017.7 kg yr-1 individual-1 [10]. The average coral colony size (1 m3) was
multiplied by the density of calcium carbonate (2710 kg m-3) to get colony mass. The
consumption rate of coral by parrotfish (a) was estimated to be 0.3755 individuals
yr-1. The remaining parameters were selected either based on plausible natural values
or in order to make the model comparable to natural systems. The values are:
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Then, the Jacobian matrix looks as follows:
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For cases 1 and 2, stability analysis is possible by solving det(A� I�) = 0.
In case 1,

�1 = �d, �2 = ��, �3 = r(t)

Thus, equilibrium 1 is a global attractor when r(t) < 0, and a saddle node otherwise.
In case 2,

�1 = ��, �2 =
abK

1 + ahK
� d > 0, �3 = �r(t)

Thus, equilibrium 2 is a saddle node, no matter the growth rate. However, note that
an eigenvector corresponding to �3 is
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Thus, equilibrium 2 is stable on the z-axis when r(t) > 0.


