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Taking a pragmatic approach to the processes involved in the phenomena of collective opinion
formation, we investigate two specific modifications to the coevolving network voter model of
opinion formation studied by Holme and Newman [Phys. Rev. E 74, 056108 (2006)]. First, we
replace the rewiring probability parameter by a distribution of probability of accepting or rejecting
opinions between individuals, accounting for heterogeneity and asymmetric influences in
relationships between individuals. Second, we modify the rewiring step by a path-length-based
preference for rewiring that reinforces local clustering. We have investigated the influences of
these modifications on the outcomes of simulations of this model. We found that varying the shape
of the distribution of probability of accepting or rejecting opinions can lead to the emergence of
two qualitatively distinct final states, one having several isolated connected components each in
internal consensus, allowing for the existence of diverse opinions, and the other having a single
dominant connected component with each node within that dominant component having the same
opinion. Furthermore, more importantly, we found that the initial clustering in the network can also
induce similar transitions. Our investigation also indicates that these transitions are governed by a
weak and complex dependence on system size. We found that the networks in the final states of the
model have rich structural properties including the small world property for some parameter
regimes. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4833995]

As the study of networks is applied to an ever broadening
variety of phenomena, it is important to study the proper-
ties of networks, dynamical processes coupled across net-
works, and the interplay between the two where the
coupled dynamics affect the network topology. A minimal
mathematical model that has been used to model the
social phenomena of collective opinion formation is the
coevolving voter model.1,16–26 We introduce two addi-
tional attributes to the multi-opinion coevolving voter
model, in order to describe processes and networks that
are closer to real-world situations within a still relatively
simple model. Our model includes a “social environ-
ment,” modeling the inherent heterogeneity and asymme-
try in relationships within a social group. We also include
a path-length-based preference for rewiring that reinfor-
ces social clustering. Our inclusion of this second attrib-
ute has been influenced by the fact that clustering is a
ubiquitous feature of networks and has not been incorpo-
rated as a dynamic entity in most coevolving voter mod-
els. We explore the consequences of these two additional
attributes within the coevolving voter model, comparing
and contrasting the behaviors of this only slightly more
complicated model with those of the minimal coevolving
voter model. Our results highlight the important role of
clustering, with possible consequences for future applica-
tions of coevolving voter models.

I. INTRODUCTION

It has been widely reported in the media that online
social networks like Facebook, Twitter, Blackberry messen-
ger, etc. played a key role in recent events in the world politi-
cal sphere such as the Arab spring and London riots of
2011.2–6 Meanwhile, there has also been increased interest in
the quantitative and analytical analysis of the mechanisms
and dynamics of the spread of social contagions such as
rumors and opinions on complex networks.6–15 In such stud-
ies, individuals in the society are represented by nodes with
edges indicating relationships between them, and then tech-
niques from social network analysis and from statistical and
nonlinear science are employed to analyze plausible models
of the dynamics of spread of social contagions on a
network.1,16–26

We propose a variation of the simplest coevolving net-
work voter model of opinion formation, studied by Holme
and Newman.1 In the model of Holme and Newman, an edge
between individuals with different opinions is either re-
wired to connect two nodes having the same opinion or the
opinion of an individual is changed to agree with the opinion
of one of its neighbors. The selection from these two options
is based on a parameter named the rewiring probability. We
add two more simple mechanisms to this model, inspired by
a pragmatic approach to the modeling of asymmetric influen-
ces and tendencies to local clustering in the phenomenon of
collective opinion formation. We then observe a broader
array of model behaviors induced by these modifications to
the coevolving voter model. For convenience of the presenta)Electronic mail: nmalik@email.unc.edu
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exposition, we refer to these additional mechanisms as: (1)
Social environment and (2) Social clustering. Below we
describe their meaning and significance in the processes of
opinion formation.

Acceptance or rejection of somebody else’s opinion by
an individual depends on a multitude of factors including the
strength of relationship between the concerned individuals.
A prevailing social environment (as defined, e.g., in Ref. 27)
not only alters relationships between individuals but can also
affect their opinions on different issues in a fundamental
way. A highly divisive society may be an outcome of inflexi-
bilities in relationships that exist between individuals who
resist accepting or sharing each others’ opinions, choices, or
views. Moreover, these inflexibilities themselves could be
due to the prevailing “negative” social environment. In con-
trast, a “positive” social environment leading to flexible rela-
tionships between individuals leads to less resistance to
accept each others’ opinions, choices, or views. In modern
times, media and advertising also play a significant role in
altering the social environment and in constructing consent
around certain opinions or choices.28

We propose to incorporate the effect of the social envi-
ronment on the model of opinion formation on coevolving
networks by a distribution of probability of accepting or
rejecting opinions between individuals. The distribution for
social environment replaces the constant rewiring probability
that has been used before in other studies on voter model
with coevolving networks.1,16–18 Such description of the
social environment becomes more plausible if we note the
fact that relationships among individuals in a social group
are inherently heterogeneous and asymmetric. For simplicity,
we have assumed that the social environment remains the
same over the temporal evolution of the model.

Another important aspect that has not yet been sufficiently
analyzed in the models of opinion formation on coevolving
networks has been the role of local clustering of edges in the
network and other similar preferences for new links to be
formed between nodes that are already near each other in the
network. Indeed, in most models studied to date, the dynamics
involved have been assumed to be independent of the any dis-
tances in the network beyond the immediate nature of whether
two nodes are already connected. In the present model we
have attempted to explore the complex consequences of a sim-
ple introduction of network-distance and clustering effects
into the model. Specifically, we replace the random rewiring
step of other models with a step that prefers rewiring to node-
s/actors who are already close within the network and who
have higher probability of accepting new opinions. This pro-
cess reinforces local clustering in the evolving network so that
clustering coefficients do not vanish in the large-network limit
(as in other previous models). Clustering is a fundamental
property of most network representations of social contexts,
i.e., friends of friends have a higher likelihood (relative to the
rest of the network) of also being friends.13,14,29 However,
rewiring rules for coevolving network models that do not rein-
force clustering (as in, e.g., Refs. 1 and 16) can randomize
away any initial clustering, greatly simplifying the associated
opinion dynamics at the cost of dynamically generating net-
works that are unlike real social networks.

The explicit incorporation of model processes for social
environment and social clustering provides a simple simula-
tion for the coupled effects of opinions with clustering and
homophily, the tendency of individuals to connect with indi-
viduals having similar characteristics.30

II. DESCRIPTION OF THE MODEL

Let GðN;EÞ be a network of N nodes and E edges with a
predefined topology. Let fOig represent a set of O number of
opinions initially uniformly distributed over the N nodes of
GðN;EÞ. Let pij be the probability of some node j accepting
an opinion from node i. The distribution PðpijÞ describes the
social environment determining the values of pij, the proba-
bility of the jth node accepting the opinion of the ith node. If
an edge exists between node i and j then we say Eij ¼ 1. An
edge connecting two nodes with different opinions (i.e.,
Eij ¼ 1 with Oi 6¼ Oj) is called a discordant edge. The total
number of discordant edges in G is represented by E$ and
E ¼ Eþ þ E$, where Eþ represents the number of harmoni-
ous edges (i.e., edges connecting nodes with the same
opinion).

Algorithm 1: A voter model on a coevolving network with
clustering and heterogeneous levels of influence.

1: Generate a graph G of given topology

2: Generate a given distribution for pij, i.e., PðpijÞ
3: Populate nodes with O number of uniformly distributed
opinions fOig
4: Calculate E$
5: while E$ 6¼ 0 do
6: Randomly choose a discordant edge Eij (with equal
probabilities of which end of the edge is labeled i and j)
7: Generate a uniform random number n between 0 and 1

8: if n < pij then

9: Oj  Oi

10: Calculate E$
11: else:

12: Remove the link between i and j, i.e., set Eij ¼ 0

13: Find the set N 0 ¼ fjgj 6¼i \ fkg
! Here fjgj 6¼i is a set containing all nodes such that each

element satisfies pij & n and set fkg contains all nodes not
directly connected to node i that are within graph-theoretic
distance d from note i, with d the minimum possible distance

such that N 0 6¼ ;. If no such distance exists, proceed

14: if N 0 6¼ ; then

15: Connect i randomly to any node l 2 N 0

16: Ol  Oi

17: else:

18: Connect i randomly to any node j s.t. Oj ¼ Oi

19: end if
20: Calculate E$
21: end if
22: end while
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Different individuals have different probabilities of ac-
ceptance of others’ opinions, which is here taken to be inde-
pendent of the existence of a link between the individuals.
Several factors ranging from socio-cultural affinity to the
prevailing political and economic situation can influence
these probabilities differently for different individuals. To
account for such variability we have used a distribution
PðpijÞ for rewiring probabilities rather than a constant. We
call PðpijÞ the social environment function, accounting for
the heterogeneous and asymmetric relationships among indi-
viduals. For the purposes of simply exploring a variety of
settings, we have considered two different kinds of power
laws for the social environment. We set PðpijÞ ¼ pa

ij to repre-
sent a flexible social environment, i.e., many individuals are
able to accept others’ opinions readily. Alternatively, we
consider PðpijÞ ¼ 1$ pa

ij to represent an inflexible social
environment where individuals do not accept others’ opinion
readily and, hence, more churning happens in the network
dynamics [see Fig. 1(b)]. While there has been some empiri-
cal evidence to suggest that election results in multi-party
democracies have power law distributions of votes among
candidates from different parties31–33 (but see also Refs. 34
and 35), our use of a power law distribution in the present
context is driven only by its simplicity for simulation and for
the presentation of a qualitatively diverse set of social envi-
ronments as a one-parameter family. Other distributions such
as the exponential, beta, and extreme value distributions
should also suffice to reproduce similar features. Any distri-
bution which can qualitatively describe “flexible” and
“inflexible” regimes would be sufficient here for the intended
purpose here though of course some of the quantitative
results would vary.

Steps 13–16 in Algorithm 1 ensure that rewiring connec-
tions are mostly made according to social clustering, i.e., a
node has higher probability of connecting to a person who is
either a friend of a friend or, if no such connections are avail-
able, connecting to a person at the shortest possible distance
identified in the network. The set N 0 in Algorithm 1 consists
of nodes/individuals who are close to the node i both in
terms of path length between them in the network and also in
that they have higher probabilities of accepting the opinion

of node i. Hence, we call the nodes within the set N0 to be
socially close to the node i. If node i is not able to find an
individual satisfying the required constraints, it connects uni-
formly at random to somebody else holding the same opinion
to avoid complete social isolation.

Here, we aim to study the role of clustering of the net-
work in altering the opinion space and network properties of
the final end state. In so doing, our emphasis will be on tran-
sitions that occur in the network structure (notably, sizes and
clustering of connected components) rather then just the
space of opinions. We refer to the ratio of the number of
opinions to the number of nodes, O/N, as diversity. We have
fixed the average degree hki ¼ 4 and number of opinions
O¼ 100 for the simulations, if not mentioned otherwise. We
have additionally investigated other values of numbers of hki
and O to confirm the robust nature of the qualitative proper-
ties that we describe. By the definition of the dynamics, the
number of edges is conserved: at any time t, EðtÞ ¼ hki N

2.
Letting the coevolution of the network and opinions start at
t ¼ t' with initial number of discordant edges E$ðt'Þ, the dy-
namics stop at the earliest t ¼ tf such that E$ðtf Þ ¼ 0. That
is, the final state of this model has no discordant edges
remaining.

There are several levels of additional complexity that
might be considered, and other plausible choices could be
made to provide new insights into the coevolving dynamics
of opinions and networks. But most such choices come at the
price of making the model analytically harder to track.
Indeed, even the very limited analytical tractability of graph
fission in a two-opinion coevolving voter model presented in
Ref. 16 is undoubtedly aided by the rewiring rule considered
there randomizing away all non-trivial clustering. In light of
the significant complications introduced by the distance-
influenced rewiring rule considered here, we have attempted
to computationally analyze this model in a thorough manner.

A. Basic features of the model

In this section we give a brief introduction to the basic
features of this model. First, we obtain two qualitatively dis-
tinct final states as we vary the social environment from flex-
ible to inflexible. For a flexible social environment with
PðpijÞ ¼ pa

ij and a ¼ 6:0, we observe formation of a single
large connected component of size comparable to the initial
network with each node in the component having the same
opinion. We call this kind of final state a hegemonic consen-
sus because of the emergence of one single dominating opin-
ion. For an inflexible social environment, simulated by
setting PðpijÞ ¼ 1$ pa

ij with a ¼ 6:0, we observe that the ini-
tially connected network disintegrates into a large number of
small connected components where every node in a given
component holds the same opinion, i.e., each component is
in a state of internal consensus. We will refer to this kind of
final state as a segregated consensus as this feature is qualita-
tively similar to the segregation of individuals in a society. A
lattice based classical model of this social phenomena was
given by Thomas Schelling,20 where he showed segregation
of two groups of populations (“red” and “white”) who move
over a check board following some simple rules. Several

FIG. 1. Different types of social environment function PðpijÞ, where pij is
the probability of the jth node accepting the opinion of the ith node: (a)
“inflexible,” PðpijÞ ¼ 1$ pa

ij, so that more links will have lower probabil-
ities of accepting opinions; (b) “flexible,” PðpijÞ ¼ pa

ij, so that more links
will have higher probabilities of accepting opinions.
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analytical and simulation results have been obtained follow-
ing Schelling’s model on networks as well as on coevolving
networks but not in the context of modeling processes
involved in collective opinion formation.36–38

A visualization for these observations for N¼ 1000
nodes with O¼ 100 is shown in Fig. 2. The drastic transition
between the hegemonic consensus and segregated consensus
in the final states of the systems seems to occur somewhere
between the extreme flexible to inflexible social environ-
ments. Holme and Newman1 observe some transitions quali-
tatively similar to this distinction between hegemonic and
segregated consensus by changing their constant rewiring
probability parameter. Intuitively, it is not surprising that
changing the distribution of the social environment induces a
transition similar to that studied by Holme and Newman,1

insofar as the change in the distribution changes the overall
average level of rewiring. Nevertheless, a priori we have no
reason to expect that change in the form of the distribution
of probabilities of accepting or rejecting of others’ opinions
should have similar effects as the changes to the single rewir-
ing probability parameter employed by Holme and
Newman.1 Also, the detailed structural properties of the net-
work in the hegemonic consensus and segregated consensus
in the final states observed here are expected to be much
richer, as shown and discussed below in some detail.

In Fig. 3 we observe the effect of varying the social
environment, where si is the size (fraction of nodes in the
network) of the ith component in the final consensus state,
with i indexing the rank of the component sizes (i¼ 1 being
the largest component). A further analysis of the phase tran-
sition involved in emergence of these two distinct states in
this system has been attempted in detail in Sec. III, as one of
the two central themes of this paper.

The giant consensus community occurring in the Holme
and Newman model1 would appear to be structurally similar

FIG. 2. A visual representation of the
formation of qualitatively distinct con-
sensus states for two different social
environments. Both systems start with
an initial Watts-Strogatz network (with
N¼ 1000, hki ¼ 4, and C ¼ 0:1). (a)
Setting PðpijÞ ¼ 1$ pa

ij and a ¼ 6 cre-
ates an “inflexible” social environment.
We observe disintegration of the net-
work into small connected components
with each component in internal con-
sensus, i.e., segregated consensus
occurs in the network. (b) Setting
PðpijÞ ¼ pa

ij and a ¼ 6 creates a
“flexible” social environment. We
observe a dominant connected compo-
nent in the final consensus, with size
comparable to the initial network, while
a large number of the initial opinions
go extinct. We refer this kind of final
state as a hegemonic consensus.

FIG. 3. The effect of different social environments on a network of
N¼ 1000 nodes with O¼ 100 opinions initially present. The starting net-
work is an Erd}os-R!enyi random network (i.e., clustering (1=N). (a) The dis-
tribution of component sizes si, the fraction of nodes in the ith (ranked by
size) connected component in the final consensus state, is plotted as a func-
tion of social environment (with marker sizes proportional si). Colors indi-
cate Ci

f , the clustering coefficient of the ith component. The thick bold line
in the middle separates the two types of social environment function: on the
right we consider flexible social environments, with a single large connected
component with size increasing with increasing a; on the left we consider
inflexible social environments, observing a decrease of the size of the largest
connected component with increasing a, finally leading to its disintegration
into several components of comparable sizes. (b) The sizes of the two largest
connected components, s1 and s2, is plotted versus social environment.
Simulations were conducted on 100 realizations of the network and initial
opinion distribution, with the plotted component sizes estimated as the
means over these realizations. Error bars give the standard deviation of these
sizes across realizations.
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to networks obtained under a configuration model with the
observed final state degree distribution. In contrast, as
observed in Fig. 4(a) the largest connected component in the
hegemonic consensus has small world properties in that the
average path lengths are comparable to independently dis-
tributed random networks but have high clustering coeffi-
cients. The dominant component also consists of nodes with
higher numbers of connections, as is apparent from the
change in cumulative degree distribution shown in Fig. 4(b).
Because these features are qualitatively closer to organized
political or religious movements, which usually have a hier-
archy of leadership and high clustering, we have pointedly
not referred to this structure as a mob. We have not observed
variation in diversity O/N to bring about any significant
change to the above discussed basic properties, while vary-
ing O from 2 to 100.

Another crucial aspect to consider in this model is the
role of initial network topology in transitions between hege-
monic consensus and segregated consensus as the two dis-
tinct final states. Does the variation of the initial clustering
coefficient change the final state? This question has not been
considered in the previous studies of voter models on
coevolving networks, as the previously introduced models
have not treated clustering as a consequence of those models,
even though clustering is one of the essential characteristics
of social networks.13,14,29 In the model considered here, the
formation of a hegemonic consensus state apparently does
not take place in networks with high initial clustering coeffi-
cient. To understand this feature we investigate the evolution
of clustering in this model.

We specify the clustering coefficient of the network, C,
as three times the ratio of the number of loops of length three
to the number of connected triples of nodes, also known as
transitivity.39 Symbols C' and Cf are used here for the initial
clustering at the start of the simulation and the final cluster-
ing at the end of the simulation, respectively. In the Watts-
Strogatz model, for example, the maximum possible initial
clustering Cmax corresponding to the ring topology is
Cmax ¼ 3ðhki$2Þ

4ðhki$1Þ. Therefore, with hki ¼ 4, we would have
Cmax ¼ 0:5 (see, e.g., Ref. 40). The Cmax value is also an
upper bound for the observed Cf . In Fig. 5 we plot the evolu-
tion of different variables of the model from a single simula-
tion of N¼ 1000 nodes as discordant edges are removed.
The social environment of this simulation was set to be flexi-
ble, PðpijÞ ¼ pa

ij, with a ¼ 6:0, in a parameter regime where
we expect formation of a hegemonic consensus state for ini-
tially unclustered networks. When we set C' ¼ 0, the opinion
space does undergo a transition as expected, and we see one
opinion dominating [see Fig. 5(a)]. Correspondingly, there is
no transition in the size of the largest connected component
[see red dotted line in Fig. 5(c)]. For the black curve in Fig.
5, we have set C' ¼ Cmax, and we observe a counter intuitive
and unexpected transition viz. that the largest connected
component starts to disintegrate and become smaller in size
[see Fig. 5(c)] while in opinion space we do not observe
emergence of a single dominant opinion [see Fig. 5(b)]. We
also observe in the lowest panel of Fig. 5 that C saturates to
Cf before reaching the consensus. This is a special feature of
this model and provides an opportunity to study the evolu-
tion of a clustered network topology with opinion formation.
For the case PðpijÞ ¼ pa

ij with a ¼ 6, Cf appears to be well
approximated by a linear function of C'.

We also see in panel (d) of Fig. 5 that the system starts
to slow down, in terms of the time necessary to remove the
next discordant edge, right before the consensus states
emerges. That is, more iterations are required to decrease the
number of discordant edges, possibly indicative of some
form of critical slowing of the system as segregation is
reached. This feature is not as apparent in the red dotted
curve, implying that processes involved in formation of heg-
emonic consensus might not involve critical slowing of the
system. To identify the region of the parameter space where
initial clustering C' plays a dominant role in determining the
final state, we have plotted the values of s1 in Fig. 6 across
the parameter space of a and C'. We observe in Fig. 6 that

FIG. 4. Properties of the largest connected component (hegemonic consen-
sus) for the final state reached for a flexible environment, PðpijÞ ¼ pij, with
a ¼ 6:0 from an initially Erd}os-R!enyi network. (a) Comparisons of average
path length, maximum degree, clustering coefficient and size for different
network sizes, with different markers representing different network sizes
(see the legend). The initial network is G0, with initial clustering close to
zero, while s1 here denotes both the largest connected component in the final
state and its size (as a fraction of the nodes in the network). We observe that
s1 has a significantly higher clustering coefficient (0.2) whereas it has path
length comparable to the initial Erd}os-R!enyi network G0, implying that s1

has small world features. Also, s1 typically has higher kmax (maximum
degree) while its size remains comparable to G0. (b) The cumulative degree
distribution C(k) of the initial network G0 (dashed lines) is compared with
that for s1 (markers), further showing that s1 has nodes with higher degrees.
In its tail, the cumulative degree distribution of s1 appears to approximately
follow a power law as shown by solid grey line of exponent $8 though the
steepness of this line does not preclude other distributions in the tail.
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higher values of initial clustering in the flexible social envi-
ronment regime can induce fragmentation. In Fig. 7 we show
the disintegration of the network into smaller components as
we increase the initial clustering coefficient from 0 to Cmax.
Now that we have briefly illustrated some of the features in
the evolution of clustering in the model, we present a more
systematic analysis of this transition below.

III. PHASE TRANSITIONS

A. Role of social environment in transitions

As discussed above this model shows transition to two
distinct final states. For flexible social environments we have
observed that as a is increased, the largest connected compo-
nent’s size approaches that of the whole network, s1 ! 1
(see Fig. 3). In contrast, for the inflexible social environ-
ments, we have disintegration of the network into several
smaller sized connected components. As we move from

FIG. 6. A phase diagram for s1 (size of the largest connected component)
varying a and C' in both the inflexible and the flexible social environments.
Colors represent the values of s1 (see the color bar). The left panel belongs
to the inflexible social environment regime whereas the right panel belongs
to the flexible social environment regime. Observe the disintegration of the
largest connected components in the flexible social environment regime (the
right panel) for higher values of initial clustering C' (lower values of s1 in
shades of red). For lower values of C' we do not observe any such disinte-
gration (higher values of s1 in shades of blue). In the inflexible regime (the
left panel) we observe that values of a dominate the final outcome of the
simulation. A network of N¼ 1000 nodes and with O ¼ 100 initial opinions
was employed for each a and C'. For visualization, data were interpolated
onto a regular grid by a combination of natural neighbor and spline
interpolation.

FIG. 7. The effect of different initial clustering C' on a network of N¼ 1000
nodes with O¼ 100 initial opinions for flexible social environment PðpijÞ ¼
pa

ij with a ¼ 6. Large initial clustering C' leads to final states with segregated
consensus, contrary to the expected hegemonic consensus for initially
unclustered networks in the same flexible social environment. (a) The distri-
bution of component sizes si, the fraction of nodes in the ith (ranked by size)
connected component in the final consensus state, is plotted as a function of
the initial clustering coefficient, C' (with marker sizes proportional si).
Colors indicate Ci

f , the clustering coefficient of the ith component in the final
state. (b) The sizes of the two largest connected components, s1 and s2, are
plotted versus C'. Simulations were conducted on 100 realizations of the net-
work and initial opinion distribution, with the plotted component sizes esti-
mated as the means over these realizations. Error bars give the standard
deviation of these sizes across realizations.

FIG. 5. The evolution of system variables with decreasing number of dis-
cordant edges. Each variable is plotted at the last time step when that num-
ber of discordant edges, E$, was present in the system. The black line and
panel (b) correspond to simulations starting at the highest possible clustering
coefficient Cmax whereas the red dotted line and panel (a) correspond to sim-
ulations starting at the negligible clustering coefficient obtained with a ran-
dom network of independent edges. In (a) and (b), each color corresponds to
one of the opinions, with width indicating the number of nodes holding that
opinion. The wide width of cyan at the end in (a) represents the formation of
a hegemonic consensus (one large connected component of size comparable
to the initial network). We do not observe a similar transition in (b) even
though the only difference in this simulation is the large initial clustering
coefficient. In (c), we plot s1, the size of the largest connected component.
Observe the abrupt drop of the black line in s1, indicating the disintegration
of the network into smaller components (i.e., segregated consensus). In con-
trast, we do not observe any such transition for the red dotted line, corre-
sponding to the formation of hegemonic consensus. In (d), we show hDti, the
average number of iterations of the system between last-observed times for
each E$, with a substantial increase for the black curve near the end. In (e),
C is the corresponding evolution of the clustering coefficient.
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inflexible to flexible social environments, fewer and fewer
initial opinions survive, with the most extreme case being
where only one dominant opinion survives with formation of
a hegemonic consensus. Here we will attempt to infer from
numerical simulations whether these transitions have a finite
size effect.41 The complexities involved in this model makes
analytical analysis hard, but it is possible to obtain a variety
of details using numerical simulations.

From Fig. 3 we observe that somewhere when the pa-
rameters of the model are in the inflexible social environment
regime there is emergence of smaller sized connected com-
ponents. Hence, we will focus on those transitions which
occur within the parameter setting of the inflexible social
environment, i.e., PðpijÞ ¼ 1$ pa

ij. For all of the simulations
below, we have used an Erd}os-R!enyi random network as the
initial network at the start of the simulation. In Fig. 8(a) we
observe multiple transitions in the system when a is varied
from 0.5 to 6.0 for inflexible social environments. The first
transition is visible in the size of s1, where a weak depend-
ence on the size of the system seems to emerge [see inset
Fig. 8(a)]. The data from different system sizes appear to col-
lapse onto a single curve when a small factor N$0:05 is multi-
plied to a. That is, it appears that this transition value of a
has dependence on the size of the system proportional to
N0:05 [see vertical lines in the inset of Fig. 8(a)], and this
transition point would move to infinity in the thermodynamic
limit.

A second transition for finite systems appears to occur
near a ¼ 4:25 where the best fit to the data points changes
from a polynomial fit to power law fit [see Figs. 8(b) and
8(c) and Figs. 8(e) and 8(f)]. All fitting reported here has
been obtained using a least squares routine provided in
SciPy’s optimize package, which uses minpack’s lmdif and
lmder algorithms.42 This transition is more apparent in Fig.
8(d) for the size of the second largest connected component,
s2. In Fig. 8(g), we have plotted the Shannon entropy over
the sizes of the 10 largest components, H ¼

Pi¼10
i¼1 si lnðsiÞ.

Considering only 10 largest components for this calculation
is a close approximation to the total Shannon entropy of the
size distribution in most cases, given the rapid decrease in
the tail of the size distribution. In this figure, the transition
near a ¼ 4:25 is visibly very much apparent as H tends to

saturate and then start to decrease. The polynomial fit in Fig.
8(a) has the following form:

s1 ¼ aa2 þ baþ c if a < 4:25;

s1 ( f ðNÞa$2:460:02 if a & 4:25;
(1)

where a ) $0:029, b ) N0:05260:001 $ 1:4, c ) N$0:36logðNÞ,
and f(N) is a function dependent on N. A similar analysis for
s2 also yields a polynomial fit

s2 ¼ aa$2:1 þ ba2:1 þ c if a < 4:25;

s2 ( f ðNÞa1:4260:12 if a & 4:25;
(2)

where a(N0:0027$1:02, b)$2:68$6N$1:54, and c(N1:75,
and again f(N) is a function dependent on N. This analysis
brings out a highly complex dependence of s1 and s2 on sys-
tem size for the transition occurring near a¼4:25. However,
as indicated by the errors to the polynomial fit and power
law fits in Figs. 8(b) and 8(c) and 8(e) and 8(f), a polynomial
fit becomes systematically less erroneous as N is increased.
It remains possible that for large N these multiple transitions
might coalesce into a single continuous transition.

B. Role of network structure in transitions

Social networks are generally known to have higher
clustering.43 The initial definition of global and local cluster-
ing was in the context of social ties.13,14,29,44 In previously
studied coevolving voter models with random rewiring the
clustering tends to decay away to that of independently dis-
tributed edges ((1=N) as the system evolves with
time.1,16–18 In contrast, because the present model reinforces
clustering, we observe non-trivial clustering is sustained
throughout the dynamics, never dropping to near zero (see
Fig. 5).

Such a model provides an opportunity to explore the
influence of the clustering coefficient on transitions between
the formation of a hegemonic consensus and segregated con-
sensus. We are here mainly interested in knowing whether
C', the initial clustering, can affect the formation of the hege-
monic consensus. We know from the discussion above that if
we set PðpijÞ ¼ pa

ij (flexible social environment) with a ¼ 6

FIG. 8. Variation of s1 (size of largest connected component) and s2 (size of second largest connected component) with a for inflexible social environments,
PðpijÞ ¼ 1$ pa

ij. Different shapes and colors of the markers represent networks of different sizes [see legend in (g)]. In (a) we observe multiple transitions in s1

collapse onto a similar curve (inset) for rescaling a by N0:05. A second transition is observed near a ¼ 4:25 [dashed grey vertical lines in (b) and (c)], where a
best fit to the data changes from a polynomial to power law, as indicated by the values of !, the errors between the fitted function and the s1 data points. This
second transition appears to be collocated with a transition in s2 appearing in (d), with an abrupt decreasing of s2 after a ¼ 4:25 (dashed grey vertical line).
Similar to (b) and (c), the best fit to the s2 data changes from a polynomial to power law [see (e) and (f)]. In (g), we plot the Shanon entropy H of the 10 largest
connected components versus a, observing that H tends to saturate near a ¼ 4:25 (dashed grey vertical line) and decreases for higher a.
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and an initial random network of independently distributed
edges (or network with negligible clustering coefficient), we
will get a hegemonic consensus as the final state, with the
size of the largest connected component s1 ( 1. If we instead
vary the initial clustering C' of the system, employing a
Watts-Strogatz model for the initial network, we observe (in
the inset of Fig. 9) that with increasing initial clustering the
largest connected component tends to disintegrate into
smaller sizes. For even higher C', rather then having only
one dominant connected component of size s1 ( 1, we get
multiple smaller similarly-sized connected components, i.e.,
segregated consensus occurs in place of hegemonic consen-
sus. So, even in the case of a highly flexible social environ-
ment (PðpijÞ ¼ pa

ij, a ¼ 6), we can still get disintegration and
no single dominant opinion if the initial clustering of the net-
work is high enough.

To get an estimate on the critical values C' where we
could start observing the disintegration in the consensus
state, we further analyze the results obtained in Fig. 9. We
observe that if we multiply C' by a factor of logðNÞ, the data
collapse onto one curve (see Fig. 9), implying that transition
seems to be occurring at C' ( 1=logðNÞ. If we plot the tran-
sition scales 1

logðNÞ (as done in the inset of Fig. 9 by means of
vertical lines), we observe drop off in the values of s1 starts
near these scales. The form of the function fitted to the data
in Fig. 9 is as follows:

s1 (
1 if C' *

1

logðNÞ

aCc' expð$kC'Þ if C' >
1

logðNÞ
;

8
>>><

>>>:

where, k(N$0:3760:018, a(N$0:9560:07, and c (N$0:1360:012.
Though this functional form has a complex dependence on
system size, the critical values C' appear to be varying as

1
logðNÞ. Hence, this transition would exist in a finite network
and the critical value of C' would tend to zero in the thermo-
dynamic limit.

A further analysis of the connected components formed
in segregated consensus shows that their sizes are approxi-
mately power law distributed. In Fig. 10(b) we have plotted
the slope of the line fitted to the sizes of connected compo-
nents and in Fig. 10(a) there is an illustration of the same for
N¼ 1500 nodes. As C' increases, the slope becomes smaller
and the error bar to the fit is reduced, indicating that sizes of
the connected components are becoming comparable as C' is
increased, i.e., similar sized contrarian social groups or cults
are formed. Importantly, we also note from Fig. 7 that these
similar sized components generally have very high clustering.

IV. CONCLUSIONS

We have considered a model for opinion formation on
coevolving networks with two additional attributes: social
environment, modeled by a distribution of susceptibilities to
opinion change, and a path-length-based preference for
rewiring that reinforces social clustering. The social cluster-
ing component intrinsically links the topological evolution
of the network with the processes involved in collective
opinion formation and vice versa.

We observed that two qualitatively distinct final states
can emerge in this model. In hegemonic consensus, a domi-
nating large connected component with each node within the
component having the same opinion. Importantly, this domi-
nating large connected component also maintains nontrivial
local clustering. Such clustering contrasts with the properties
of previously studied models, as random rewiring in those
models leads to non-clustered random networks as the final
consensus state. The other outcome that emerges under pa-
rameter settings of inflexible social environments is the dis-
integration of the network and formation of small isolated
components consisting of nodes holding the same opinion.
As a feature qualitatively similar to the segregation of indi-
viduals in a society, we have named this final state a segre-
gated consensus.

A fundamentally key aspect we have studied using the
features of this model is the role of clustering in the coevolv-
ing network/opinion process since the clustering of the net-
work is continually reinforced by the preference to rewire to

FIG. 10. The sizes of different connected components in the consensus state
for networks of N¼ 1500 nodes. (a) Sizes of connected components v. their
ordered (by decreasing size) indices. As initial clustering of the network C'
(color bar) is increased, there is emergence of smaller components of com-
parable sizes. (b) The values of the exponents, b0, of the slopes fitted to the
sizes of components in the final consensus state v. indices at each value of
C' [the thick red line in (a) is an example for C' ¼ 0:5]. In (b), observe the
decrease in the slope and error bars for higher initial clusterings, indicating
the formation of several components of comparable sizes.

FIG. 9. Variation in the size of the largest connected component s1 with ini-
tial clustering coefficient for flexible social environment, PðpijÞ ¼ pa

ij, with
a ¼ 6. When logðNÞ is multiplied to C' the data for different system sizes
appears to collapse onto a single curve. The inset curve shows the fits to data
without scaling, with vertical lines 1

logðNÞ indicating the scales of the transi-
tion points.
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nodes at smaller path length in this model. We observed that
if the initial network has clustering above a critical value,
then even in a flexible social environment we get segregated
consensus as the final state. This is contrary to what happens
with a network having initially negligible clustering (as in a
random network of independently distributed edges).
Injection of this additional attribute to the model makes the
dynamics of this system richer and more relevant to social
networks, but at the price of making any analytical study
much more difficult than for other models, such as discussed
in Refs. 16–23.

One can observe similar features in the process of opinion
formation in society, for example, hegemonic consensus may
be analogous to situations in multi-party democratic elections
where one party wins by a landslide. In contrast, some hung
elections may be similar to a segregated consensus.45 A simi-
lar situation can also occur when choices are made on a prod-
uct among many available brands, with monopoly of one
brand over the product being a hegemonic consensus and seg-
regated consensus being when there is more even competition
over a product between different brands.46

Further analysis of the transitions in numerical simula-
tions of different sizes has indicated complex and weak de-
pendence on system size. In particular, it is possible that the
multiple transitions induced by variations in social environ-
ment might coalesce into a single continuous transition for
large systems. Meanwhile, the scaling of the transition
induced by clustering in the initial network indicates that it
may only exist for a finite system. Importantly, because this
latter transition occurs for initial clustering (1=logðNÞ (cf.,
independently distributed edges giving clustering (1=N), we
note that one should be careful making any claims about the
applicability of coevolving network models that lack rein-
forcement of clustering to real-world network situations that
have non-trivial transitivity.
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