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. T n d = length of fin, dy = initial fin length, n = number of fins,
changing the geometry of the fuel within the rocket. Specifically, the M, = initial mass of rocket, including fuel

instantaneous surface area of the propellant is important to consider. A
rocket is propelled forward by forcing a stream of mass (exhaust)

Then x(t) = xy + £x4 and so forth, to obtain closer approximations of the rocket’s
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Case 1: M = initial mass of rocket

Case 2: M = empty mass of rocket
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In practice, fine-tuning of the grain geometry is used to achieve specific the rocket, and that the force of gravity is a constant, g, rather than a SImUIatlng LaunCh Parameters:
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and neutral thrust curves are basic ways to classify the thrust of a rocket us to express force as (thrust - gravity) and integrate twice from the initial to N onciusion.
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half-filled, and finocyl cross section could be used to provide progressive, 1. Simple Form to Solve Analytically ol iR A demonstration of picture of the behavior of a solid fuel rocket from launch to spaceflight. In particular, we
regressive, and neutral thrust, respectively. h consider the impact of fuel grain geometry, drag, and gravitation due to the earth and the
dv  dm - (ﬂ)_ . mg 1 the dramatic influence moon. On the whole, careful designation of parameters produces highly plausible flight
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Saturn V Rocket. Source: Kevin Boudreaux, Angelo State University.



