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Abstract

We survey several predator strategies for pursuit of fleeing prey. The physical framework is a two-
dimensional plane on which the predator and prey are point masses which are each able to exert
a propulsion force of fixed magnitude and also experience a friction force. The model strategy
for the prey is attempting self-propulsion a fixed angle away from the direction of predator. The
chase trajectories resulting from various predator strategies for picking self-propulsion direction are
calculated in a variety of conditions.

Introduction

Model problem
We employ Newton’s Second Law in two dimensions to track the positions of the animals over time.
The drag force is assumed to be in the opposite direction from velocity with a magnitude proportional
to velocity. Letting the mass, two-dimensional position, self-propulsion force magnitude (corresponding
to strength), self-propulsion direction, and drag coefficient of the predator be denoted by M , X, R̂, F ,
and D, and letting the same elements for the prey be denoted by m, x, r̂, f , and d, we have

MẌ = F R̂ −DẊ mẍ = f r̂− dẋ

where dot denotes derivatives with respect to time t, while R̂ and r̂ are unit vectors corresponding to
the strategies of the predator and prey, respectively; these unit vectors are functions of the animal’s
own mass, strength, drag coefficient, position, and velocity, as well as the other animal’s position and
velocity. Finally, let Lc denote the the distance within which the predator is considered to have caught
the prey.

Nondimensionalization
Note that, given the above equations, the maximum speed attainable by the predator, Sm, and the
minimum time it would take the predator to reach this speed in the absence of drag, Tm, are given by

Sm = F

D
Tm = M

D

with corresponding equations holding for the prey’s sm and tm.

We nondimensionalize from the perspective of the predator, letting Lc and Tm be the characteristic
length and time and defining nondimensionalized predator position, prey position, and time as

Y = X
Lc

y = x
Lc

τ = t

Tm

This yields

Y′′ = AR̂ −Y′ y′′ = b
(
ar̂− y′

)
where prime denotes derivatives with respect to τ , and the nondimensional parameters A, a, and b are
given by

A = MF

D2Lc
= SmTm

Lc
a = Mf

DdLc
= smTm

Lc
b = Md

mD
= Tm
tm

These parameters can be interpreted as follows: A and a are the capture lengths traversable at
maximum speed within Tm by the predator and prey, respectively, (corresponding roughly to their
agilities) and b gives how many times longer the predator takes than the prey to reach its maximum
speed in the absence of drag (corresponding roughly to the relative maneuverability of the prey
compared to the predator).

In general, we examine the case where the prey is less agile but more maneuverable then the predator
(i.e. A > a, b > 1) to see how the predator can best take advantage of greater maximum speed and
overcome its maneuverability hurdle.

Naive Strategies

The most naive strategy for the predator would be to simply propel itself towards the prey, giving

R̂n = y−Y
‖y−Y‖

A real-world motivated prey strategy is to pursue the same direction with some fixed angle offset α,
with 45◦ being a typical value for deer pursuit (Stankowich et al.); this yields

θn = atan2(R̂n.y, R̂n.x) r̂ = (cos(θn + α), sin(θn + α))

Even for the simplest of strategies, analytic solution of the steady state can be intractable, but numeri-
cal solutions are still illustrative. Figure 1 shows the necessity of the prey’s angle offset when A > a; in
the second case’s steady state, the prey orbits a concentric circle within the predator’s own circular orbit.

Figure 1: Naive strategies with A = 20, a = 10, b = 2, both animals initially at rest, and the prey initially 10 units ahead of
the predator. On the left, α = 0◦. On the right, α = 45◦. The orange circle and dashed line represent the capture radius.

Further Predator Strategies

Prey Interception
Suppose the predator takes the velocity of the prey into account. If it assumes that the prey’s velocity
will be constant, then the predator’s ideal velocity might be its maximum speed A directed at some
direction R̂i so as to intercept the prey at some time τi:

Y + AR̂iτi = y + y′τi

Letting yrel = y−Y and solving for τi yields a quadratic equation with the positive solution

τi = 1
A2 − ‖y′‖2

(
y′ · yrel +

√(
y′ · yrel

)2
+
(
A2 − ‖y′‖2

)
‖yrel‖2

)
R̂i = 1

A

(
y′ + yrel

τi

)

Smooth and Aggressive Slowdown
Suppose the predator takes its own velocity into account. If the predator has some desired velocity Y′d
and wants to smoothly accelerate from its current velocity to Y′d, then it might desire to self-propel in
a direction R̂s such that Y′′ = AR̂s−Y′ has the same direction as Y′d−Y′; in this case, Rs = Y′d.
Suppose instead that, to avoid situations like the second trajectory of Figure 1 where orbiting with too
much momentum prevents it from reaching the prey, the predator further desires to focus on reducing
its current momentum by some ’speed cutting’ constant c as follows:

R̂a = Av̂− cY′

‖Av̂− cY′‖
, where v̂ =

Y′d
‖Y′d‖

Note that if the desired velocity is given by Y′d = AR̂n, i.e. maximum speed towards the
prey, then c = 0 corresponds to the naive strategy, while c = 1 corresponds to self-propelling in
direction of AR̂n −Y′.

Trials and Case Discussions

The predator strategies surveyed are plain naive R̂n, naive with smooth slowdown R̂s (Y′d = AR̂n

and c = 1), naive with aggressive slowdown R̂a (Y′d = AR̂n and c = 2), plain prey interception R̂i,
and prey interception with smooth slowdown R̂is (Y′d = AR̂i and c = 1).

Situation Parameters Capture Time / Steady-State Distance
Case A a b α ‖yrel(0)‖ R̂n R̂s R̂a R̂i R̂is

1 20 10 2 45◦ 10 10.14 3.03 5.19 8.20 1.99
2 20 10 2 15◦ 10 6.31 2.22 41.92 8.69 2.15
3 20 10 2 45◦ 100 10.14 3.03 43.27 9.71 9.80
4 20 10 2 15◦ 100 6.31 11.14 387.69 11.19 11.21
5 20 10 10 45◦ 10 12.72 6.41 4.80 7.99 2.22
6 20 10 10 15◦ 10 11.38 - 46.93 9.82 2.60
7 30 10 1.1 45◦ 10 2.77 2.19 1.20 3.88 1.11
8 30 10 1.1 15◦ 10 1.17 1.15 1.15 1.15 1.14
9 11 10 10 45◦ 10 17.15 8.55 ∞ 7.7 12.38
10 11 10 10 15◦ 10 15.96 5.12 ∞ 9.76 18.47

Table 1: Trajectory results for the 5 strategies in 10 situations. Cases 1 is the default situation explored before. Case 3 and
case 5 drastically raise initial distance and relative prey maneuverability, respectively. Case 7 represents an ideal situation
for the predator with A� a and b ≈ 1, while case 9 represents a difficult situation for the predator with A ≈ a and
b� 1. Cases 2, 4, 6, 8, and 10 are identical to the preceding cases with smaller prey angle offset. The most successful
strategy for each case is bolded. Strategy R̂s for case 6 reaches no constant steady-state distance (plotted below).

Figure 2: Case 6. Strategy R̂s (left) exhibits a complex orbit with a steady-state distance that oscillates at constant
magnitude. Strategy R̂a (right) is able to capture the prey by reducing speed to the prey’s level and exploiting the prey’s
offset angle to produce a converging spiral trajectory. In situations where predator agility is significantly greater than prey
agility, strategy R̂a usually results in (often lengthy) capture, but otherwise the slowdown can result in divergence.

Figure 3: Case 9. Strategy R̂i (left) exhibits a series of loops that converge to a typical concentric circular orbit. Strategy
R̂is (right) is able to capture the prey since the slowdown modification causes its trajectory to go wider left towards the
prey’s direction of motion, reducing the curvature in the prey’s trajectory. Across the surveyed cases, the combination of
prey interception and smooth slowdown is the most robust strategy and typically produces the best result.
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