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We systematically investigate the phenomena of coherence resonance in time-delay coupled
networks of FitzHugh-Nagumo elements in the excitable regime. Using numerical simulations, we
examine the interplay of noise, time-delayed coupling, and network topology in the generation
of coherence resonance. In the deterministic case, we show that the delay-induced dynamics is
independent of the number of nearest neighbors and the system size. In the presence of noise, we
demonstrate the possibility of controlling coherence resonance by varying the time-delay and the
number of nearest neighbors. For a locally coupled ring, we show that the time-delay weakens
coherence resonance. For nonlocal coupling with appropriate time-delays, both enhancement and
weakening of coherence resonance are possible. Published by AIP Publishing.
https://doi.org/10.1063/1.5003237

The FitzHugh-Nagumo system is a paradigmatic model
which describes the excitability and spiking behavior of
neurons. It has various applications ranging from biologi-
cal processes to nonlinear electronic circuits. In the excit-
able regime under the influence of noise, this model
exhibits the counterintuitive phenomenon of coherence
resonance. It means that there exists an optimum inter-
mediate value of the noise intensity for which noise-
induced oscillations become most regular. We investigate
coherence resonance in a network of delay-coupled
FitzHugh-Nagumo elements with local, nonlocal, and
global coupling topologies. Networks with nonlocal topol-
ogy are inspired by neuroscience, as they emulate the
observation that strong interconnections between neu-
rons are typical within a certain range while fewer con-
nections exist at longer distances. We illustrate that the
interaction between the network topology, the time-delay
in the coupling, and the noise leads to a rich oscillatory
dynamics. In particular, we demonstrate that the regular-
ity of this dynamics is controllable, i.e., one can enhance
or weaken coherence resonance by varying the coupling
and delay time.

I. INTRODUCTION

All natural processes are inevitably affected by internal
and external random fluctuations, i.e., noise. Even a relatively
low noise intensity can significantly influence the behavior of
a dynamical system. In nonlinear systems, noise can play a
constructive role and give rise to new dynamic behavior, e.g.,
stochastic bifurcations, stochastic synchronization, or coher-
ence resonance.1–4 The counterintuitive effect of coherence
resonance describes the non-monotonic behavior of the regu-
larity of noise-induced oscillations in the excitable regime.
This results in an optimum response in terms of the regularity
of the oscillations for an intermediate noise strength.

In addition to noise, the presence of time-delay can
essentially change the dynamics of a real-world system.
Time-delay naturally arises in many processes, including
population dynamics, chemical reactions, and lasers.5

Interestingly, time-delay has been used not only to describe
these processes but also to control them. For instance, when
introduced in a nonlinear dynamical system, it can control
deterministic chaos.6 Delay can control noise-induced oscil-
lations as well and consequently effects such as stochastic
resonance and coherence resonance. A passive self-adaptive
method for controlling noise-induced oscillations already
exists, and delayed feedback previously used to control
deterministic chaos forms the basis of this approach.7–11

Since then, several studies have been conducted on both
excitable and non-excitable systems, as well as on single and
coupled oscillators.12–16 These studies illustrate that delayed
feedback effectively manipulates the properties of coherence
resonance and adjusts the timescales of oscillations. Previous
studies have revealed that introduction of time-delayed feed-
back in a single system can control coherence resonance.17,18

In many systems, there are physical reasons for including
time-delay in their modeling. For example, in neuroscience
combining coupling with time-delayed feedback is a conve-
nient approach to describe signal transmission in neuronal
networks, i.e., the propagation delay of action potentials
between neurons. Meanwhile, modeling studies have shown
that the presence of time-delay coupling can regulate the
dynamics in networks, including stochastic synchronization
in noise-affected systems and coupled lasers.19–23

The objective of this work is to investigate the interplay
between noise, delay, and network topology of time-delay
coupled neurons, where the FitzHugh-Nagumo model in the
excitable regime represents the local dynamics of each neu-
ron. In particular, we are interested in the phenomena of
coherence resonance.3,8–10,12,13,17,24–33 Thus far, the control
of coherence resonance has been studied in single FitzHugh-
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Nagumo and in two coupled FitzHugh-Nagumo oscillators
with time-delayed feedback.12 In contrast, here we aim to
investigate the control of coherence resonance in a network
of delay-coupled FitzHugh-Nagumo oscillators.

The organization of this paper is as follows: In Sec. II,
we introduce the model and describe the behavior of a single
FitzHugh-Nagumo oscillator. In Sec. III, we characterize the
regimes of delay-induced oscillations in the deterministic
case. Next, in Sec. IV, we discuss the stochastic case but
without the time-delay. We introduce different measures of
coherence resonance and present an analysis of coherence
resonance in a network of oscillators without the delayed
coupling. We also explore the dependence of coherence reso-
nance on the coupling parameters and on the bifurcation
parameter. Finally, in Sec. V, we investigate the interplay of
noise, delayed coupling, and network topology. We explore
in detail how the time-delay and nearest neighbor coupling
influence the coherence resonance, including the cases when
underlying networks have complex topologies. Finally, we
conclude in Sec. VI with a summary of the results.

II. MODEL

Throughout this paper, the model considered is a net-
work of N coupled FitzHugh-Nagumo oscillators. A
FitzHugh-Nagumo oscillator is a minimalistic prototypical
model of an excitable system.34,35 Excitable systems possess
a single stable rest state and remain in the rest state unless
perturbed by a sufficiently strong external input. Once per-
turbed, the system leaves the rest state and passes through
the firing and the refractory states. The external driving has
only a weak influence on the firing and refractory state.26

Nonlinear dynamical systems exhibiting the above properties
have been proposed as models for neuronal spike generation.
In neuroscience, the large excursion of the system’s variables
due to strong external perturbation (forcing the system to
leave the rest state) is called a spike and their occurrence as
firing. The excitability of a neuron can be classified into two
categories, namely, type I and type II. Whereas type-I neu-
rons undergo a saddle-node infinite period bifurcation, type-
II neurons undergo a supercritical Hopf bifurcation.26,36–38 A
phenomenological description of this distinction also exists
in the classical work of Hodgkin and Huxley.39 The
FitzHugh-Nagumo oscillator has been employed to model
type-II neurons.

The following set of equations describes a ring network
of N FitzHugh-Nagumo oscillators:

! _ui ¼ ui "
u3

i

3
" vi þ

r
2P

XiþP

j¼i"P

ujðt" sÞ " uiðtÞ
! "

;

_vi ¼ ui þ aþ
ffiffiffiffiffiffi
2D
p

niðtÞ; i ¼ 1;…;N; (1)

where ui and vi are dimensionless variables. The voltage-like
variable ui allows for regenerative self-excitation through
positive feedback, i.e., it is an activator variable; vi is a
recovery-like variable and provides a slower negative feed-
back, i.e., it is an inhibitor variable. The index i stands for
the node i in the ring network of N oscillators. The time-

scale parameter ! is usually much smaller than 1 for neuronal
models; here, we set ! ¼ 0:01. P denotes the number of near-
est neighbors to each side. For a ring, every node has the
same number of connections; this gives rise to two limiting
cases of local and global coupling, P¼ 1 and P ¼ ðN " 1Þ=2
(for odd N), respectively. Note that for sufficiently large N,
global coupling can be approximated by P ¼ N=2. When
1 < P < N=2, we call it non-local coupling. Thus, P acts as
a control parameter for the topology of the underlying net-
work. r is the constant coupling strength, and the coupling
term has the form of classical diffusive coupling, i.e., the
coupling vanishes if the variables ui and uj are identical. s is
the propagation delay. D stands for the noise intensity. In
this work, we use Gaussian white noise represented by nðtÞ
with hnðtÞi ¼ 0 and hnðtÞnðt0Þi ¼ dðt" t0Þ for t 6¼ t0.40 a is
the deterministic bifurcation parameter. A single FitzHugh-
Nagumo system in the deterministic case (D¼ 0) undergoes
a supercritical Hopf bifurcation at a¼ 1. For jaj < 1, the sys-
tem is in the oscillatory regime where the steady state is
unstable and self-sustained oscillations are observed. For
jaj > 1, the system is in the excitable regime and character-
ized by a locally stable steady state.

III. DETERMINISTIC CASE: IMPACT OF TIME-DELAY

To study the effect of delayed coupling on coherence
resonance, the system must be in the parameter regime
where no delay-induced oscillations exist. However, for cer-
tain time-delays and coupling strengths, delayed coupling
induces self-sustained oscillations between two coupled
FitzHugh-Nagumo oscillators, even when both oscillators
are in the excitable regime (stable steady state) and there is
no external noise applied.19,41 A saddle-node bifurcation
resulting in a pair of stable and unstable limit cycles gener-
ates these oscillations.19 To identify parameter regimes
where delay coupling induced oscillations are absent, we first
study a ring network of N FitzHugh-Nagumo oscillators in
the deterministic regime by setting D¼ 0 in Eq. (1). We
numerically integrate Eq. (1) for different values of s and r
and calculate the interspike interval or the oscillation period
T of synchronized oscillations. The results for a¼ 1.05 and
a¼ 1.3 are shown in Figs. 1(a) and 1(b), respectively, where
T is plotted in the parameter space of coupling strength r
and delay time s. Figure 1(a) with a¼ 1.05 is closer to the
Hopf bifurcation point, and we observe that further away
from the bifurcation point [Fig. 1(b) with a¼ 1.3], we require
larger delay s and coupling strength r to obtain delay-
induced oscillations. The black region in Figs. 1(a) and 1(b)
stands for the absence of delay-induced oscillations: this is
the regime on which we focus in this work.

For both Figs. 1(a) and 1(b), we use P¼ 4; however, it
can be shown that the region of delay-induced oscillations is
independent of the ring topology and system size: Consider
the delayed-coupling term in Eq. (1): r

2P

PiþP
j¼i"P½ujðt" sÞ

"uiðtÞ'; j 6¼ i. Since delay-induced oscillations are synchro-
nized, i.e., u1ðt" sÞ ¼ ( ( ( ¼ uNðt" sÞ ) usyncðt" sÞ and
u1ðtÞ ¼ ( ( ( ¼ uNðtÞ ) usyncðtÞ, where usync is the synchro-
nized solution, we can simplify the delayed coupling term as
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r½usyncðt" sÞ " usyncðtÞ'. Rewriting Eq. (1) for the determin-
istic case, we find

! _usync ¼ usync "
u3

sync

3
" vsync þ r usyncðt" sÞ " usyncðtÞ

! "
;

_vsync ¼ usync þ a: (2)

It is observed that this equation is independent of both the
nearest neighbor number P and the number of oscillators N.
Thus, the regime of delay-induced synchronized oscillations
is independent of the ring topology and system size.

IV. COHERENCE RESONANCE

Pikovsky and Kurths24 coined the term coherence reso-
nance to characterize the emergence of relatively coherent
oscillations in a FitzHugh-Nagumo system at an optimal
noise intensity. Since then, this phenomenon has been exten-
sively studied in various nonlinear models. Several different
measures exist in the literature for quantifying coherence res-
onance, such as the correlation time, the signal-to-noise-
ratio, and the normalized standard deviation of the interspike
interval.3,13,24 In this work, we will use the last one. It is

defined as R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ht2ISIi"htISIi2

p

htISIi , where tISI is the time between

two subsequent spikes and h( ( (i indicates the average over
the time series. A system undergoing coherence resonance
will show a pronounced minimum in the value of R.24 The
above definition of R is limited to characterizing coherence

resonance for a single FitzHugh-Nagumo oscillator. For a
network of oscillators, coherence resonance can be measured

by redefining R as follows: R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ht2ISI i"htISI i2

p

htISI i
, where the over-

line indicates the additional average over nodes. We will
refer to htISI i as the period of the system T. Moreover, we
refer to the period that the system shows under coherence
resonance as the intrinsic period of the system and denote it
by To.

Next, we study the role of noise intensity D and coupling
strength r in inducing coherence resonance in a network of
locally coupled (P¼ 1) FitzHugh-Nagumo oscillators without
delay. We measure R in two different parameter settings, first
we increase D, keeping all parameters fixed and second we
increase r, keeping all the other parameters fixed. The results
are shown in Figs. 2(a) and 2(b); note that the x-axis is loga-
rithmic. In Fig. 2(a), both curves for a¼ 1.05 and a¼ 1.3
have a minimum, i.e., both cases show coherence resonance
at two different noise intensities D. It is worth noting here
that if the system is closer to the Hopf bifurcation point, i.e.,
for a¼ 1.05, it requires lower noise intensity for coherence
resonance to occur. On the other hand, if the system is further
away from the Hopf bifurcation point, i.e., for a¼ 1.3, the
system requires higher noise intensity. We observe D¼ 0.001
for the former and D¼ 0.079 for the latter case. In Fig. 2(a),
we have set r ¼ 0:1, P¼ 1, and N ¼ 100. To study the
effects of coupling strength on the above observed coherence
resonance, we measure R as r is varied in two different
parameter settings: first, for a¼ 1.05 and D ¼ 0:001 and

FIG. 1. Regime of delay-induced oscil-
lations in the (s; r) plane for different
values of the bifurcation parameter: (a)
a¼ 1.05 and (b) a¼ 1.3. The period of
oscillations T is color coded and corre-
sponds to T ¼ sþ d with small d > 0.
The black region denotes the absence
of delay-induced oscillations. The ini-
tial history function corresponds to a
spike for all oscillators. Other parame-
ters: ! ¼ 0:01, N¼ 100, P¼ 4, and
D¼ 0.

FIG. 2. Normalized standard deviation of the interspike interval R for two different values of the bifurcation parameter a¼ 1.05 (circles) and a¼ 1.3 (trian-
gles): (a) for fixed coupling strength r ¼ 0:1 and varying noise intensity D and (b) for fixed noise intensities D¼ 0.001 (for a¼ 1.05) and D¼ 0.079 (for
a¼ 1.3) and varying coupling strength r. The results are obtained by integrating Eq. (1) over 10 000 time units and then averaging over time, oscillators, and
realizations (for 20 simulations each). Note the logarithmic scale for the x-axis. Other parameters: ! ¼ 0:01, P¼ 1, N¼ 100, and s¼ 0.
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second, for a¼ 1.3 and D¼ 0.079. The results are plotted in
Fig. 2(b). We observe for the case a¼ 1.05 and D¼ 0.001
that coherence resonance is enhanced when 0:1 * r < 1. In
Fig. 2(b), we have set P¼ 1 and N ¼ 100. Several other
works have also shown that coherence resonance can be
enhanced by choosing appropriate coupling strengths. For
example in Refs. 25 and 42, it was shown that some choices
of coupling strength increase coherence resonance in an array
of non-identical FitzHugh-Nagumo oscillators; in Ref. 31, a
similar feature was observed in the case of weighted scale-
free networks.

To visualize the above observations, in Figs. 3(a)–3(d),
we depict space-time plots for different noise intensities. For
small noise D¼ 0.00012, in Fig. 3(a), we observe that the
system is spiking irregularly, but still it is in a highly syn-
chronized state. This implies that the deterministic coupling
dominates the system dynamics for small noise intensities.
As the noise intensity is increased to an optimal value
D¼ 0.001, in Fig. 3(b), we observe highly regular synchro-
nous spiking, and this is the parameter regime where we
observe coherence resonance. Once noise exceeds its optimal
value, and in Fig. 3(c), the system exhibits cluster synchroni-
zation, i.e., several clusters of synchronously spiking oscilla-
tors are formed. When external noise is further increased, in
Fig. 3(d), cluster synchronization disappears and each node
oscillates individually, driven by its own noise.

So far, we have only discussed coherence resonance in a
ring network with P¼ 1 (every node has exactly two neigh-
bors). To explore the impact of P, we fix r ¼ 0:1 and
a¼ 1.05 and study the system with four different values of
P, namely, P¼ 4, P¼ 12, P¼ 25, and P¼ 50 (all to all
connected network). For each case, we calculate the noise
intensity Do for which we observe coherence resonance.
Also, we evaluate the corresponding values of R and T and
denote them as Ro and To, respectively. We summarize our
findings in Table. I. We notice that as P is increased, Do and
Ro decrease, indicating that we require lower noise intensity
to observe stronger coherence resonance for higher P. In

contrast to a single FitzHugh-Nagumo system, coherence-
resonance in a network occurs at lower values of the noise
intensity.

V. INTERPLAY OF TOPOLOGY AND DELAYED
COUPLING

In this section, we explore the effects of topology and
delayed coupling on noise-induced oscillations. In a single
FitzHugh-Nagumo oscillator, a time-delay can either enhance
or suppress coherence resonance.9 If the delay is s ¼ nTo, then
for an integer n, coherence resonance increases, whereas for
half-integer n, it is weakened.9 In contrast to Refs. 8 and 9,
where a single FitzHugh-Nagumo oscillator is analyzed, we
study a network of N delay-coupled FitzHugh-Nagumo oscilla-
tors. Therefore, we will illustrate not only the influence of
time-delay but also the topology.

We will investigate the effects of s ¼ 1
2 To and 1

3 To on a
network of oscillators described by P¼ 1, P¼ 4, P¼ 25, and
P¼ 50. It is important to note that To refers to the period of
the network with particular topology when it exhibits coher-
ence resonance. Hence, for each P, we have a different To.
Next, we present the results on the influence of coupling
topology on coherence resonance. We divide these results
into three sections according to the coupling topology dis-
cussed. Section V A examines the locally-coupled ring, Sec.
V B discusses the non-locally and globally coupled ring, and
in Sec. V C, we consider networks with complex topologies.

FIG. 3. Space-time plots for a¼ 1.05
at different noise intensities: (a)
D¼ 0.00012, (b) D¼ 0.001, (c)
D¼ 0.005, and (d) D¼ 0.05. Other
parameters: ! ¼ 0:01, s¼ 0, P¼ 1,
N¼ 100, and r ¼ 0:1.

TABLE I. Values of parameters D, T, and R at coherence resonance when P
(number of nearest neighbors) is varied. Other parameters: ! ¼ 0:01,

a¼ 1.05, r ¼ 0:1, and N¼ 100.

P¼ 1 P¼ 4 P¼ 12 P¼ 25 P¼ 50

Do 0.001 0.001 0.0008 0.0008 0.0008

To 3.53 3.51 3.53 3.61 3.62

Ro 0.06 0.04 0.032 0.029 0.029
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A. Locally coupled ring

First, we study P¼ 1, i.e., a locally coupled ring. We
plot R and the period of oscillations T vs. noise intensity D
in Figs. 4(a) and 4(b), respectively. The corresponding val-
ues of Ro, Do, and To are listed in the first column of Table
II. Comparing the values of Ro for P¼ 1 without time-delay
(Table I) and in the presence of time-delay (Table II), one
can see that for s ¼ 1

2 To and 1
3 To, coherence resonance is

slightly weakened. Also, coherence resonance occurs at the
same noise intensity Do, with almost the same minimal value
Ro for both delays. Once the noise is sufficiently large, it
overtakes the dynamics of the network, and delayed-
coupling does not play a role any longer. As shown in Fig.
4(a), for both s values, the system undergoes a local mini-
mum in R, and a further increase in noise intensity leads to a
monotonic increase in R.

B. Non-locally and globally coupled ring

Now, we study a non-locally coupled (1 < P < 50) and
a globally coupled (P¼ 50) ring network. The non-locally
and globally coupled ring leads to two different outcomes:
while coherence resonance is enhanced for s ¼ 1

2 To, and it is
weakened for s ¼ 1

3 To, compared with the undelayed case
(see the values of Ro in Tables I and II). The corresponding
numerical results are displayed in columns two to four in
Table II and plotted in Figs. 5(a)–5(f).

For s ¼ 1
2 To, coherence resonance is strengthened as P

increases, with the strongest coherence resonance being
observed for global coupling [see Table II or Figs. 5(a) and
5(c)]. In contrast, for s ¼ 1

3 To, coherence resonance is weak-
ened with increasing P [see Table II or Fig. 5(e)]. Also,

when s ¼ 1
2 To, in Table II, we observe that coherence reso-

nance occurs at smaller noise intensities compared to P¼ 1.
It should be noted that for both s ¼ 1

2 To and s ¼ 1
3 To, the val-

ues of To are higher than one observed for s ¼ 0 in Table I.
In Table II, for s ¼ 1

3 To, we note that increasing P leads
to increasing R0, i.e., the irregularity of the motion increases.
This particular observation suggests that for s ¼ 1

3 To,
delayed-coupling induces irregularity in the oscillations. It
destabilizes the time interval between successive spikes and
nodes. Hence, it increases the range of the variation of the
period T under the change of noise strength [also see Figs.
5(b), 5(d), and 5(f)].

C. Networks with complex topologies

Here, we discuss the examples of networks with complex
topologies, namely, the Erd}os-R"enyi random network and the
small-world network. We employed the Watts-Strogatz
model to generate a small-world network.43

FIG. 4. (a) R vs. noise intensity D and
(b) period of oscillations T vs. noise
intensity D for different time-delays in
the case of a locally coupled ring, i.e.,
P¼ 1. The inset in panel (a) shows a
zoom-in view of the indicated region.
Other parameters: ! ¼ 0:01, a¼ 1.05,
N¼ 100, and r ¼ 0:1.

TABLE II. Values of parameters D, T, and R at coherence resonance when
P (number of nearest neighbors) and s (time-delay) are varied. Other param-
eters: ! ¼ 0:01, a¼ 1.05, r ¼ 0:1, and N¼ 100.

P¼ 1 P¼ 4 P¼ 25 P¼ 50

Delay-coupled network s ¼ 1
2 To

Do 0.0006 0.0004 0.00025 0.0002

To 3.85 3.66 3.75 3.8

Ro 0.094 0.036 0.01 0.007

Delay-coupled network s ¼ 1
3 To

Do 0.0006 0.0004 0.0005 0.0006

To 3.79 3.96 4.18 4.26

Ro 0.096 0.092 0.127 0.159

FIG. 5. Same as Fig. 4 for a non-locally coupled ring: (a) and (b) P¼ 4; (c)
and (d) P¼ 25; and (e) and (f) globally coupled ring (P¼ 50). (a), (c), and
(e): R vs. D and (b), (d), and (f): oscillation period T vs. D for different time-
delays (see the legend for specific values). Other parameters are as in Fig. 4.
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For s¼ 0, coherence resonance occurs for both cases
[Figs. 6(a) and 6(c)]. However, in the presence of time delay
for the small-world network, coherence resonance is weak-
ened [Fig. 6(a) and 6(b)], whereas for the Erd}os-R"enyi ran-
dom network, it is suppressed [Figs. 6(c) and 6(d)]: R only
grows while D increases.

VI. SUMMARY AND CONCLUSIONS

We have systematically studied coherence resonance in
a network of delay-coupled FitzHugh-Nagumo oscillators
and have presented a detailed analysis of rich dynamics
emerging due to the interactions between noise, time-
delayed coupling, and topology. First, we demonstrated that
in a ring network of deterministic FitzHugh Nagumo delay-
coupled oscillators, the regions of delay-induced oscillations
are independent of the number of nearest neighbors P and
system size. Furthermore, we showed that these regions
depend on the bifurcation parameter a and they grow when a
is further away from the Hopf bifurcation.

Next, we considered the stochastic case without time-
delay, i.e., D 6¼ 0 and s¼ 0. We observed that coherence res-
onance can be enhanced or weakened by the coupling
strength r. With increasing r, we have found a minimum in
the normalized variance of the interspike interval R, i.e.,
coherence resonance is strengthened. We studied coherence
resonance for two different values of the bifurcation parame-
ter, viz., a¼ 1.05 and a¼ 1.3 (with P¼ 1), and found that
larger noise intensity is required to observe coherence reso-
nance in the latter case. Moreover, for a¼ 1.3, higher cou-
pling strength is needed for coherence resonance. That is
why changing the system from a¼ 1.05 to a¼ 1.3 increases
the range of no-delay-induced oscillations; coherence reso-
nance requires higher noise and coupling. Therefore, keeping
the system at a¼ 1.05 is better suited to study the system, as
it is more sensitive to noise, the number of nearest neighbor
P, and coupling strength.

On including non-zero time-delay into the system, sev-
eral new features emerged. We explored the system with two

different time-delays, namely, s ¼ 1
2 To and s ¼ 1

3 To.
Whereas for a locally coupled ring (P¼ 1), delay-coupling
weakens coherence resonance for both values of s, in the
case of a non-locally (1 < P < 50) and globally (P¼ 50)
coupled ring, we found different results depending on s. For
s ¼ 1

2 To, an enhancement of coherence resonance is
observed, while for s ¼ 1

3 To, coherence resonance is weak-
ened. This is due to the influence of an indirect coupling:
node i is directly coupled to 2P nodes, and additionally, it is
indirectly coupled to ð2PÞ2 neighbors with a delayed cou-
pling of 2s. Hence, for s ¼ 1

2 To, the total propagation delay
is equivalent to To and for s ¼ 1

3 To to 2
3 To, leading to the

enhancement or weakening of coherent dynamics.
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