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In Math 46: Introduction to Applied Mathematics, course material included
various applications of differential equations to physical and chemical
processes. In this final project, we seek to apply some of our newfound
knowledge of these techniques to the physics of a rocket launch and orbit.

Our model involves equations relating to fuel consumption, rocket
trajectory, and eventual satellite orbit. First, we examine the process of fuel
consumption within the engine, which gives rise to a differential equation
describing the change in rocket mass over time. This equation becomes a
parameter for thrust, which determines the rocket's upward motion. As the
rocket moves away from earth's surface, drag and gravitational force also
become factors in the system of equations describing its trajectory. Finally,
we examine the physics of a satellite in orbit as a function of initial
conditions derived from the rocket's flight. In the process of developing the
model, we use various approximation techniques to produce analytically
solvable equations. We then construct a final model in MATLAB, where we
can view our simulations and the effects of changing parameters. We also
use the model to “slingshot” the theoretical rocket around a body such as
the moon.

The amount of thrust provided by the engine throughout the burn is critical.
In solid-fuel rockets, the main way to achieve a desired thrust curve is by
changing the geometry of the fuel within the rocket. Specifically, the
instantaneous surface area of the propellant is important to consider. A
rocket is propelled forward by forcing a stream of mass (exhaust)
backwards. In a rocket burning solid fuel, this mass flow rate is described by
the following equation:

𝑑𝑚
𝑑𝑡 = 𝜌 ∗ 𝑏 ∗ 𝐴 𝑡

where Τ𝑑𝑚 𝑑𝑡 is the mass flow rate, 𝜌 is the density of the fuel, 𝑏 is the linear
burn rate of the fuel, and 𝐴(𝑡) is the instantaneous surface area of the fuel
(the part burning) at time t.

The above equation applies when modeling the the “quasi-steady state”
portion of the burn, which excludes ignition and burnout (Sullwald 7). It is
reasonable to assume that the density of the fuel and linear burn rate will
be constant throughout this time. The burning surface area will certainly
evolve over time, and therefore the shape of the fuel, or grain geometry, is
important in determining the mass flow rate, and then the mass of the
rocket itself. Here we track how the burning surface evolves by assuming
that burning will occur in a direction normal to the burning surface, and at
rate b as stated above. The cross sections of three possible fuel
arrangements are shown below.

The following chart shows some implications of the different grain structures
on mass flow rate as well as the mass of the rocket throughout the burn. In
each case, an evolving surface area leads to a mass flow rate equation.
Integration can be used to find the total mass of exhaust at a certain time,
and that mass equation can be used to determine the mass of the rocket at
any given time.

Simulating Launch Parameters:

After determining the mass flow rate, dm/dt, and the mass of fuel burned
over time, m(t), for the rocket, the mass equations become parameters for
a model of the rocket's flight. In its most basic form, the rocket equation
describes the mass of the rocket times its acceleration in terms of three
forces: thrust, gravity, and drag. Thrust is the force with which the expelled
mass propels the rocket upward, and it is expressed as the product of the
velocity of the mass being expelled and dm/dt. Gravity, a function of the
rocket's distance from the center of the earth, and drag, a function of its
velocity, work in the opposite direction to slow the rocket as it moves
upward.

In order to analyze the rocket's flight, we can use either a full equation
incorporating all of these forces in their most complex forms, or simplified
versions to solve analytically. The following are the full versions and
simplifying assumptions that we use for each of the three forces:

As a simple, analytically solvable form, we assume that there is no drag on
the rocket, and that the force of gravity is a constant, g, rather than a
function of the rocket's distance from the earth. These simplifications allow
us to express force as (thrust - gravity) and integrate twice from the initial to
the final mass to solve for x(t):

If we express all parameters in their most complex form, using variable
gravity and both linear and quadratic drag, we produce the following
equation, which can be solved via MatLab simulation:

Finally, by making a few adjustments, we can produce an
approximation to the rocket equation using perturbation methods:
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Simulation Details:

Figure 1: Three potential cross 
sections showing different grain 
geometries.  Left to right: 
circular bore, semi-circular 
structure, four-point finocyl.

In practice, fine-tuning of the grain geometry is used to achieve specific
thrust levels needed for different rocket missions. Progressive, regressive,
and neutral thrust curves are basic ways to classify the thrust of a rocket
over time. Diagrams for these concepts are shown below. The circular,
half-filled, and finocyl cross section could be used to provide progressive,
regressive, and neutral thrust, respectively.

Saturn V Rocket.  Source: Kevin Boudreaux, Angelo State University.

Conclusion:

The various launch parameters – fuel geometry, drag forces, initial and final
mass – produce a launch trajectory that terminates when the satellite is
ejected from the rocket. At this point, we simulate the flight path using the
gravitational fields of both the Earth and the moon. Below is shown one
such trajectory, which demonstrates the use of a celestial body as a
gravitational “slingshot” to shape the path of the satellite.

A combination of analytical approximations and numerical solutions give a complete
picture of the behavior of a solid fuel rocket from launch to spaceflight. In particular, we
consider the impact of fuel grain geometry, drag, and gravitation due to the earth and the
moon. On the whole, careful designation of parameters produces highly plausible flight
paths for a range of scenarios. There are several promising avenues of extension for this
work. Our model could consider multi-stage rockets or mid-orbit burns. We could also
create a more sophisticated model of drag in which atmospheric density falls off as a
function of altitude. In terms of orbital flight, we could improve accuracy by incorporating
the moon’s orbit around the earth instead of assuming it to be stationary, and we could
also generalize to more bodies in the solar system.

A demonstration of 
the dramatic influence 
of linear drag 
parameters on flight 
trajectory, holding 
other parameters 
constant with no 
thrust.

Flight profiles comparing 
an imaginary rocket with 
constant m(t) and dm/dt
against the behavior of 
the circular bore fuel 
geometry. 

The full system of differential equations—from launch to orbit—was solved
numerically with a system of first-order ODE’s using MATLAB’s ‘ode45’ solver.
The program incorporates linear and quadratic drag forces, gravitation due
to the Earth, gravitation due to the moon, thrust, and variable rocket mass.

We made the following simplifying assumptions: The Earth and the moon
are fixed in space (with the moon a distance R along the x-axis from the
Earth), and the atmosphere is of constant density, which goes abruptly to
zero at whatever height the rocket’s engines cut out.
Our program takes as input symbolic expressions for gravitation, thrust, and
drag. It converts them to a matrix A such that y’= Ay, where

This matrix equation is solved with ode45. A few examples of the program’s
capabilities are shown on this poster.


