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Introduction

The nonlinear dynamics of vocal fold oscillations have been an
object of study for the past several decades. Ishizaka & Flana-
gan [1] developed the well-known two-mass model, in which
the vocal folds are modeled as a four-dimensional system com-
prising a pair of two spring-coupled, damped oscillating masses
constrained to move in the lateral direction. Energy is trans-
ferred from the airstream to the vocal cords through a phase
difference in the oscillations of the upper and lower masses.
In this project, I analyze the symmetric vocal fold model
with linear damping and restitution forces. Using simpli-
fied hydrodynamics—assuming quasisteady glottal flow, with
Bernoulli flow at the narrowest portion of the glottis and zero
supraglottal pressure; neglecting effects of coupling and reso-
nance of the vocal tract; and assuming a pressure drop causing
a vena contracta at the inlet to the glottis—has been justified
by Lucero [2] and Steinecke & Herzel [3], among others, who
note that these and other simplifications produce analytical
results in line with recorded data. This suggests that the two-
mass model, although simplified, provides a reasonable starting
point for mathematical analysis of vocal fold dynamics.

Physical Motivation of Model

Figure 1: Illustration of the vocal folds, showing adducted and
abducted positions [4].

Figure 2: The two-mass model as originally proposed by Ishizaka
& Flanagan [1]; figure from [5]. The m1, m2 and m′1, m′2 pairs
correspond to the vocal folds in fig. 1; the entire mass-spring
system together comprises the glottis.

Model Parameters

Two masses, m1 and m2, are modeled with restitution springs
s1 and s2 and a coupling spring with linear spring constant
kc (see fig. 2). Although a simplified model, these masses
roughly correspond to the two layers of tissue comprising the
vocal folds, the body and cover. The body is comprised of
muscle and deep layers of ligament, making up the bulk of the
vocal fold; this corresponds to the largerm1. The cover consists
of more superficial tissues around the body, corresponding to
m2. d1 and d2 are the lengths of m1 and m2; we also define
glottal width (in the plane normal to d) l. Rest positions of
the masses are x10 and x20.
To simplify the model, I assume bilateral symmetry; that is, the
left and right systems (m1 andm2 vs. m′1 andm′2) are identical,
oscillating in phase with each other. Analysis of asymmetrical
systems is instructive in considering vocal defects such as vocal
paralysis; however, such analysis is beyond the scope of this
project.

Equations of Motion

The equation of motion for each mass takes the following form:

miẍi + bi(xi, ẋi) + si(xi) + kc(xi − xj) = Fi (1)

where i, j = 1, 2; xi is the displacement of the mass from its
rest position xi0; bi is a damping term, which may be linear or
nonlinear; si is the restitution spring force; kc is the coupling
spring constant; and Fi is the driving force acting on the mass
due to glottal pressure.
For simplicity, assume a linear restoring force si, which includes
a linear term dealing with collision of the vocal folds:

si(x1) =



kixi, xi > −xi0
kixi + hi(xi + xi0), otherwise

(2)

where hi is an increased stiffness coefficient; and a linear damp-
ing term bi(xi, ẋi) = rixi.
Setting yi = ẋi, we obtain a system of first-order differential
equations:



ẋ1 = y1
ẏ1 = 1

m1
(−r1x1 − s1(x1)− kc(x1 − x2) + F1)

ẋ2 = y2
ẏ2 = 1

m2
(−r2x2 − s2(x2)− kc(x2 − x1) + F2)

(3)

Following Lucero [2], I assume a simplified pressure flow, with
a pressure loss over the glottis caused by the vena contracta
at the glottal inlet. The driving force Fi is caused by the
subglottal pressure Ps acting on the area ai = ldi of the masses
and is given by:

F1 =



ld1Psfp, x1 > −x10, x2 > −x20

ld1Ps, otherwise
(4)

F2 =



ld2Ps, x1 > −x10, x2 6 −x20

0, otherwise
(5)

The pressure loss term fp is given by:

fp = (x1 + x10)2 − (x2 + x20)2

(x1 + x10)2 + κ(x2 + x20)2 (6)

where κ = 0.37 is the pressure loss factor calculated in [1].

Equilibria

Equilibrium positions are obtained by setting ẋi = ẏi = 0:


y1 = 0
F1 = r1x1 + s1(x1) + kc(x1 − x2)
y2 = 0
F2 = r2x2 + s2(x2) + kc(x2 − x1)

(7)

Considering equilibria in the open glottis; that is, x1 > −x10
and x2 > −x10, we obtain expressions for equilibria:

k1x
∗
1 + kc(x∗1 − x∗2) = lg1Psfp

k2x
∗
2 + kc(x∗2 − x∗1) = 0 (8)

where x∗1, x∗2 denote equilibrium positions. Clearly,

x∗2 = kc
kc + k2

x∗1 (9)
Scaling the equations in (8) following Lucero [2]:

α = kc
kc+k2

,

ji = 1 + xi/xi0, and
ps = ld1Ps

k1x10

(10)

and assuming the simplified case of a rectangular glottis; that
is, x10 = x20, we obtain:

j∗1 = 1 + ps
1 + αk2/k1

∗ j
∗2
1 − j∗22

j∗21 + κj∗22
(11)

and
j∗2 = α(j∗1 − 1) + 1 (12)

Given x∗2 = αx∗1 from (8), we obtain the solution j∗1 = j∗2 = 1,
corresponding to the trivial solution x1 = x2 = 0; and two
other solutions given by substituting (9) into (11).
I use experimentally determined parameters given in [3] to de-
termine the other two equilibrium solutions j∗1 in terms of sub-
glottal pressure ps. It is instructive to graphically examine
numerical solutions, plotted parametrically for ps:
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Bifurcation Analysis

For small ps, Im(j∗1) is either negative or positive. The transi-
tion between negative and positive imaginary parts occurs at
approximately ps ' 0.397. For large ps, Im(j∗1)=0, and Re(j∗1)
is either negative or positive. As we are restricted to the open-
glottis condition, j1 < 0 is not a valid solution; by (10), this
would correspond to x1 < −x10, the closed-glottis condition.
However, for Re(j∗1) > 0, we have x1 > −x10, which is al-
lowed under our constraints; this suggests the presence of an-
other equilibrium in the open-glottis regime. For larger values
of ps, this second equilibrium coincides with the rest position
j∗1 = 1, creating a bifurcation. Using the shooting method to
numerically solve for ps, we find that this bifurcation occurs at
ps ' 3.04.

Discussion

The two-mass vocal fold model has been studied with various
iterations of parameters, including linear and nonlinear restor-
ing and damping forces, symmetric and asymmetric conditions,
and various assumptions regarding vocal tract geometry and
airflow. In particular, bifurcations in the open-glottis regime
associated with subglottal pressure have been shown to be Hopf
bifurcations, giving rise to phonation through the creation of
steady limit cycles [3, 5, 6, 7]. Such a bifurcation indicates the
existence of a minimum subglottal pressure Ps required to enter
self-sustained oscillation, making sound production possible.
Although greatly simplified, my model recovered three equilib-
rium solutions, at least two of which coincide to form a bifur-
cation associated with phonation onset. Future plans include
further stability analysis, treatment of more realistic, nonlinear
spring and damping forces, and a more thorough treatment of
the hydrodynamics of the pressure flow.

References

[1] K. Ishizaka and J. L. Flanagan.
Synthesis of voiced sounds from a two-mass model of the vocal cords.
The Bell System Technical Journal, 51(6):1233–1268, July/August 1972.

[2] J. Lucero.
Dynamics of the two-mass model of the vocal folds: Equilibria, bifurcations, and oscillation region.
The Journal of the Acoustical Society of America, 94(3104), 1993.

[3] I. Steinecke and H. Henzel.
Bifurcations in an asymmetric vocal-fold model.
The Journal of the Acoustical Society of America, 97(1874), 1995.

[4] The music junction.
http://themusicjunction.com/.
Accessed 25 May 2017.

[5] L. Cveticanin.
Review on mathematical and mechanical models of the vocal cord.
Journal of Applied Mathematics, 2012(928591), 2012.

[6] P. et al. Merkell.
Phonation onset: Vocal fold modeling and high-speed glottography.
The Journal of the Acoustical Society of America, 104(464), 1998.

[7] J. C. Lucero.
Subcritical hopf bifurcation at phonation onset.
Journal of Sound and Vibration, 218(2), 1998.

[8] J. D. Logan.
Applied Mathematics.
John Wiley & Sons, 4th edition, 2013.

[9] J. Lucero and L. Koenig.
Simulations of temporal patterns of oral airflow in men and women using a two-mass model of the
vocal folds under dynamic control.
The Journal of the Acoustical Society of America, 117(1362), 2005.

http://themusicjunction.com/

