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Abstract

The objective of this paper is to examine the model of the population growth and decline of
the spruce budworm in the Northeastern region of the United States and Canada. The model,
as indicated in the 1978 paper, by Ludwig, Jones, and Holling, observes the growth rate of the
budworm with regards to the effects of predation and carrying capacity.

Introduction

The spruce budworm is a very destructive insect that feeds on coniferous forest, particularly the balsam
fir. There are about a dozen species of the budworm, most of which are capable of destroying entire
forests. Therefore, outbreaks of the insect play a very detrimental role in the flourishing of these forests.

Outbreaks have been modeled by mathematicians and ecologists by use of the cusp-catastrophe
theory, which exhibits a dramatic variance in their population from inconsiderable to outstanding.

Outbreak Model

Initially disregarding any predation occurring, Ludwig et al. begins with the basic logistic model for
the spruce budworm population N , given by

dN

dt
= rBN

(
1− N

KB

)
,

where rB represents the intrinsic birth rate of the budworm. KB is the carrying capacity which is
directly dependent upon the density of the foliage.
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As avian predators are introduced, our basic logistic model is then modified by subtracting the
predation rate p(N) chosen by Ludwig et al.

dN

dt
= rBN

(
1− N

KB

)
− p(N)

The predation rate is defined as

p(N) =
BN2

A2 +N2
,

where A and B are constants.
As a result, we have the Model as

dN

dt
= rBN

(
1− N

KB

)
− BN2

A2 +N2
(1)

As predation occurs, the budworm population naturally decreases. If the consumption of prey by
avian predators increases, as a result the budworm population decreases. However, the amount of
predation is limited by a level of saturation. Therefore, we assume that the predation will approach an
upper limit.

lim
N→∞

p(N) = lim
N→∞

BN2

A2 +N2
= lim

N→∞

d
dN (BN2)

d
dN (A2 +N2)

= lim
N→∞

2BN

2N
= B

By using L’Hospital’s Rule, we get the upper limit B. Next, we take the first derivative of p(N).

p′(N) =
d

dN

(
BN2

A2 +N2

)
By using Quotient Rule, we then differentiate the equation.

p′(N) =
(A2 +N2)2BN −BN2(2N)

(A2 +N2)2

After some algebra, we get

p′(N) =
2A2BN

(A2 +N2)2
.
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N

P (N)

B

Figure 1: Graph of p(N) = (BN2)/(A2 +N2).

Because both A and B are constants, p′(N) is positive. Therefore, the function p(N) is always
increasing, which is shown in Figure 1. Next, we check for concavity and find an inflection point in
order to obtain a critical value.

We first use Quotient Rule to take the second derivative.

p′′(N) =
(A2 +N2)2(2A2B)− 2A2BN

[
2(A2 +N2)2N

]
(A2 +N2)4

We can simplify further.

p′′(N) =
2A2B(A2 − 3N2)

(A2 +N2)3

We then take A2 − 3N2 and set it equal to 0 in order to find the inflection point of p(N).

A2 − 3N2 = 0

N = ±
√

1

3
A2

Because populations can only be positive, the negative value of N can be ignored. Therefore,

N =

√
A

3
.
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This inflection point acts as a switch that determines the point at which the predation rate either
increases or decreases. For values less than

√
A/3, the predation rate is increasing faster. For values

greater than
√
A/3, predation rate is slower as it continues to increase toward the upper limit B.

Dimensionless Variables

To simplify our model, we introduce dimensionless variables. This is sometimes convenient when work-
ing with complicated systems. By scaling these variables, we can avoid the inclusion of units, which will
further simplify our process.

There are four parameters in the Model, namely rB , KB , B and A. If we let

u =
N

A
=

density

density
, and τ =

Bt

A
=

(density/time)(time)

density

The fact that the dimensions cancel leaves us with variables without units. If we use the chain rule,
we can reduce the terms in order to lessen the amount of parameters used.

By the chain rule, we get

dN

dt
=
dN

du
· du
dτ
· dτ
dt

We then simplify it

dN

dt
= A · du

dτ
· B
A
.

Canceling the A’s, we have

dN

dt
= B · du

dτ
.
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We then replace dN/dt with B(du/dτ) and with Au, we get

B · du
dτ

= rB ·Au
(

1− Au

KB

)
− BA2u2

A2 +A2u2
.

Multiply both sides by 1/B and cancel A2 in predation term.

du

dτ
=
ArB
B
· u
(

1− Au

KB

)
− u2

1 + u2

Notice that the equation still contains the two parameters rB and KB . If we let

r =
ArB
B

and q =
KB

A
,

we get

du

dτ
= ru

(
1− u

q

)
− u2

1 + u2
.

In this reformulation, u, τ , r and q are dimensionless variables, making our equation much more
manageable. In this equation, the parameters in equation (1), namely rB , KB , B, and A have now been
reduced to two parameters r and q.

Steady States

In this section, we will find the equilibrium points of the equation and use MATLAB and dfield to plot
our results.

To find the equilibrium points, we set du/dτ = 0.

ru

(
1− u

q

)
− u2

1 + u2
= 0,
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which is equivalent to

ru

(
1− u

q

)
=

u2

1 + u2
.

We can see that u = 0 is always a solution, and the other solutions must satisfy

r

(
1− u

q

)
=

u

1 + u2
, (2)

where the left hand side of the equation is the growth rate per capita, and the right hand side is the
death rate per capita due to predation, both in scaled variables. See Figures 2, 3, 4, 5, and 6.
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Figure 2: One equilibrium solution when r = 0.25.

Bifurcation

The significance of the bifurcation analysis is crucial. It will enable us to further analyze the behavior
of the budworm population as the model exhibits several steady states and equilibria. As q remains
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Figure 3: As the reproduction rate increases to r = 0.38, we get a stable equilibrium solution and and
semi-stable equilibrium solution. The stable equilibrium solution is called the refuge equilibrium, and
the point tangent to the curve is called the outbreak equilibrium.
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Figure 4: As r continues to increase, there now exists three equilibrium points when r = 0.5, two of
which are stable and one is unstable.
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Figure 5: Here, there is a semi-stable equilibrium solution that is tangential to the death rate. This
semi-stable equilibrium exhibits a saddle node bifurcation.
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Figure 6: With a fixed value of q = 10, for any value of r > .56, there will only exist one equilibrium
solution. The figure shows one equilibrium solution when r = 0.60.

fixed and r increases, the model undergoes several stages where the steady states vary from containing
one, two, or three equilibrium solutions. These equilibria will either be stable, unstable, or semi-stable.
If we let

y1 = r

(
1− u

q

)
,

and

y2 =
u

1 + u2

We then set them equal to each other, where

y1 = y2,

we can see all of the solutions will occur where the death rate equals the birth rate (point of intersection).
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However, the semi-stable solutions occur when the reproduction rate reaches a value in which the
curves are tangent. In order to determine the values of r and q where the curves are tangent, we take
the derivatives of each curve and find out where they are equal.

dy1
du

=
dy2
du

To differentiate both sides of our equation, we start with

d

du

[
r

(
1− u

q

)]
=

d

du

[
u

1 + u2

]
,

then differentiate both sides with respect to u.

−r
q

=
1− u2

(1 + u2)2

Multiply by −q on both sides and solve for r.

r =
q(u2 − 1)

(1 + u2)2
(3)

Now that we have solved for r, we can substitute it back into equation (2) to solve for q.

q(u2 − 1)

(1 + u2)2

(
1− u

q

)
=

u

1 + u2

Distribute the q and multiply both sides by (1 + u2)2.

(qu2 − q)
(

1− u

q

)
=
u(1 + u2)2

(1 + u2)

After some algebra, we get

qu2 − u3 − q + u = u(1 + u2)
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We can simplify further.

qu2 − q = 2u3

Now solve for q.

q =
2u3

u2 − 1

Now that we have q, we can substitute it back into the equation (3) and solve for r.

r =

[
2u3

u2 − 1

]
·
[
u2 − 1

(1 + u2)2

]
Cancel the u2 − 1 terms and get

r =
2u3

(1 + u2)2
.

Now we are able to sketch a parametric graph in rq-space. This will enable us to get a clear reference
to understand the values of r and q that will render one, two or three clear equilibrium solutions. Regions
with three equilibrium solutions contain two stable and one unstable equilibria. However, any values of r
and q that lie directly on the curves (boundaries) will render one stable and one semi-stable equilibrium
solution. These curves indicate where the budworm population drastically changes. See Figure 7.

Cusp Catastrophe

We saw in our bifurcation analysis that the graph of q = 0 and q 6= 0 displays two very different
situations. The graphs in the ru-plane (see Figure 8) can render one, two or three equilibria, and their
stability jumps significantly. Notice that as r increases, the solutions remain stable until r=.3840. At
this point, there suddenly occurs another equilibrium solution. As r increases even further, we experience
a third equilibrium solution, where two are stable and one is unstable.

If we compare the graphs from Figure 8 with the graphs of Figures 2-6 we can see how they relate.
Notice that when r reaches a value of roughly .56 (as shown in Figure 5), the stable equilibrium dra-
matically increases in the u-direction at point B to point D. This suggests that the budworm population
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Figure 7: The figure on the left shows the graph of the cusp in the qr-plane. The figure on the right
shows a detailed depiction of the varying r-values and a fixed q-value that correlates to Figures 2-6. In
the case where r = .25, there exist exactly one equilibrium solution. The case where r = .3840 and
r = .56, there exists one stable and one unstable equilibrium, which occurs along the boundaries. The
case where r = .5 occurs three equilibria, two stable, and one unstable.
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Figure 8: The hysteresis effect of the curves on the ru plane.
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undergoes a significant increase in their population. The point at which this occurs is known as the
cusp of the graph in the rq plane. The term cusp catastrophe refers to “explosion” of the population of
this pest when their reproductive rate reaches a certain level.

The same cannot be said when the r-values are decreasing. As the r-values decrease, the u-values
remain high until point C is reached (see Figure 8), then the u-value suddenly decreases back to point
A. Notice that in doing so, it took a different and much longer path to suddenly decrease in u-values
than it did to increase.

Figure 9 shows a three-dimensional contour graph of the complete model in qru-space. The graph
on the left displays the contours as r increases. This graph gives a 3D depiction of what happens when r
reaches a value of roughly .56 (as compared with Figure 8), the contour folds and the stable equilibrium
dramatically increases in the u-direction to the upper surface of the model. The graph on the right in
Figure 9 shows the contours as q increases. Notice the similarities of the this graph when q = 10 in
comparison with that of the hysteresis effect.

Conclusion

Upon examination of the models and graphs we have created, it is now clear to see the behavior of
the spruce budworm population. We observe a dramatic increase in the population when it reaches a
certain level. However, the same cannot be said as the population recedes, as it takes much longer for
their populations to decrease than to increase. Thus, the coniferous forests are constantly threatened
as the budworm population explodes into an almost uncontrollable outbreak.
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Figure 9: The figure on the left displays an emphasis of the contours as r increases. The figure on the
right shows the contours as q increases.
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