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A new mathematical model is presented for the box-office dynamics of a motion picture
released in North America. Though previous work on this problem has usually involved
probabilistic methods, the new model for describing cumulative box-office gross uses a
continuous-time, differential-equation approach. This model, which consists of a system
of three nonlinear, coupled, ordinary differential equations, incorporates the effects of
marketing and advertising expenses, audience reaction, critical reviews, and previous
box-office behavior, among other factors. Analytical asymptotic results are presented for
various parameter regimes. In the general case, the model must be solved numerically.
Numerical simulations are tested against actual revenue data from several recent movies to
analyse the model’s accuracy. An algorithm for practical usage of the model is presented.
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1. Introduction

In this paper we present a mathematical model for the dynamics of the box-office gross
of a film released in North America. According to the 71999 Economic Review by the
Motion Picture Association of America, there were 442 new feature films released in
1999 on 37 185 screens. The North American box-office gross for calendar year 1999
was 7-45 billion US dollars, with an average admission price of US$5-08 (MPAA, 1999).
Complicating our task is the fact that even though there were only 442 films released, the
gross for each film is really a sum of small contributions from a large number of units.
These units consist of either tens of thousands of screens or tens of millions of individual
filmgoers, and our goal is to mathematically describe and understand the time-dependent
behavior of each.

With such a large amount of money at stake, clearly a predictive model for the factors
underlying box-office gross would be of great value to the studios (distributors in the
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literature), who are responsible for the production and distribution of films. Such estimates
could help a distributor plan advertising budgets, contractual stipulations, etc. However,
the total gross for a movie is only a rough estimate of the revenue the distributor will
receive, since the distributor receives money through time-varying contracts with theatre
owners (exhibitors in the literature). After the US Supreme Court antitrust decision in US
v. Paramount Pictures (1948), exhibitors and distributors must be corporate strangers. The
interested reader may consult other sources (De Vany & Eckert, 1991; Litman, 1983; Smith
& Smith, 1986) for a more thorough discussion of the impact of the Court’s decision on
the modern film industry.

The typical rental contract (exhibition license in the literature (De Vany & Walls, 1997))
typically includes the duration the exhibitor may show the film, an agreement for how box-
office revenue will be shared between the exhibitor and the distributor, and an exclusivity
provision. The initial period of the rental contract is usually for four weeks, during which
the bulk of the revenue (usually 60-70%) goes to the distributor. After this period, the
exhibitor may continue to show the film, but now the split is reversed, with the bulk of the
revenue (usually 60-70%) going to the exhibitor. Thus, the actual amount a distributor will
realize is intrinsically tied to the weekly gross of a film.

Complicating matters further are additional stipulations of a typical contract. For
instance, there is often a standard clause which sets a threshold weekly box-office total
(called ‘the house nut’) over which the distributor gets 90% of the gross. If a film ‘cracks
the house nut’ (performs in excess of the threshold), the exhibitor may ask for permission
to screen the film on additional screens. These additional provisions will necessarily
complicate the calculation of a studio’s take, and hence in this paper we ignore them,
focusing instead on predicting weekly grosses for the film. Once a successful model for
this has been established, it is relatively straightforward to predict a studio’s take. This
summary of the nature of the contractual relationship between exhibitors and distributors
is adapted from a more detailed exposition in De Vany & Walls (1996).

Clearly the gross for a film depends on the number of screens on which it is shown and
the average number of people per screen who attend each showing. Unfortunately, since the
latter factor depends on individual preferences, the problem of describing the dynamics of
the overall box-office gross is a difficult one, as previous authors have noted (Litman, 1983;
Smith & Smith, 1986; De Vany & Walls, 1999). The difficulty itself has been commented
on by such luminaries as acclaimed screenwriter William Goldman (The Princess Bride,
Butch Cassidy and the Sundance Kid), who has famously said that in Hollywood, © ...
nobody knows anything’ (Goldman, 1983).

Nonetheless, this difficult problem of quantitatively modeling box-office dynamics
has engendered fruitful academic research. Smith & Smith (1986), writing in Applied
Economics, have described the motion picture as ‘one of the best examples of the
differentiated product envisioned in conventional models of monopolistic competition.’
Almost all of the research published prior to our paper brings probabilistic and statistical
approaches to bear on the question of quantitatively describing motion picture revenue.
One prolific author in this subject area is Economics Professor Arthur S. De Vany of
the University of California at Irvine, who has exclusively used stochastic branches of
mathematics in his approach to modeling cinematic box-office (De Vany & Walls, 1996,
1997, 1999).

The starting point for most of the models is to compare the release of a motion picture
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to the celebrated Bass model of the release of a new consumer durable product (Bass,
1969). The Bass model involves three unknown parameters: the number of initial purchases
of the product, a coefficient of innovation and a coefficient of imitation. It is possible
to reformulate the stochastic version of the Bass model as one involving an ordinary
differential equation with an initial condition. The solution of this system, with given values
of the parameters, produces the now-famous S-curve which represents the rate of adoption
of a new product over time.

Another accomplished researcher in this area is Professor Jehoshua Eliashberg of the
Wharton Business School at the University of Pennsylvania. Sawhney & Eliashberg (1996)
use a two-parameter exponential distribution and a three-parameter generalized gamma
distribution to model the process of movie selection by the consumer as two steps: the
time to decide to see a new movie and the time to act on the viewing decision. More
recently, Eliashberg et al. (2000) have developed a program called MOVIEMOD which
can be used to predict box-office gross by using only pre-release data. The mathematical
approach involves the probabilistic topic of Markov chains. De Vany & Walls (1996) use
a Bayesian process of consumer demand for successful movies which they show leads
to a Bose—Einstein distribution in box-office revenue. What all these models have in
common is a desire to use probability distributions as the tool of choice for mathematical
description of the situation at hand. In fact, in De Vany & Walls (1999) the authors
model movies as stochastic dynamic processes, specifically a Lévy distribution. Their
paper is a mathematical confirmation of the ‘terrifying’ result that most of Hollywood
knows instinctively (and which is summarized in the epigrammatic Goldman quote): the
probability distribution of box-office revenue has infinite variance.

For a number of reasons we have chosen to model the problem using differential
equations. One obvious difficulty in the probabilistic-bound approaches is the immediate
question of choosing the appropriate probability distribution for the particular processes
being modeled. With the exception of Bass (1969), the other papers discussed use different
probability distributions in each of their respective models of cinematic box-office. Our
approach avoids this question altogether. Motivated by the success of the Bass model, we
feel that applying ODE models to box-office dynamics provides a fresh perspective which
can supplement the probabilistic models.

In this paper we formulate a model based on a deterministic approach where the
revenue can be predicted based on empirical laws. The probabilistic nature of the problem
is then folded into parameters in the deterministic model, parameters which vary from film
to film. This idea of moving the source of the uncertainty from the model itself to the
parameters in a deterministic model is certainly not new. It has been applied extensively
to areas such as epidemics, where the probabilistic event is the spread of the disease when
two people come in contact (Murray, 1993). The diffusion equation can be derived as the
deterministic limit of a random walk process (Lin & Segel, 1988). The idea has even been
used to give a deterministic interpretation of a coin toss (Keller, 1986).

In Section 2 we present our mathematical model of cinematic box-office dynamics.
This involves deriving the governing differential equations and the introduction of relevant
parameters. The result is a system of three coupled dimensionless nonlinear ordinary
differential equations. We also discuss the various types of parameters used in our model
and how they can be estimated.

In Section 3 we present analytical results. We demonstrate the difficulty of solving the
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system of differential equations analytically, and then present asymptotic results for the
model in various parameter regimes. These results help to indicate the effects of varying
certain parameters in the model. Where meaningful, we indicate the relationship between
the asymptotic results and the corresponding business significance.

In Section 4 we present numerical results for the model and indicate how varying
certain dimensionless parameters affects the computed solutions. We also discuss the actual
estimation process used to determine the parameters.

In Section 5 we present our numerical results for movies in three distinct classes: a
blockbuster film, a film that performed moderately well, and a film that performed poorly.
We show that the model presented here is flexible enough to produce encouraging results
for different classes of films with various box-office performance.

In Section 6 we present an algorithm for managers to self-implement the model. The
algorithm can then be used by managers to make informed choices on how to maximize
profits by using the predictive ability of the model of the cinematic box-office.

2. Developing the model
2.1 Governing equations

If the total gross of a movie at time f is given by G (1), then the ultimate goal of our model
is to obtain a value for G (00), the final gross. The rate of change of the gross is the revenue
function R(7):

aG -
— =R. 1
& (M

R is written in units of dollars/time, and hence can be related to the weekly grosses widely
circulated throughout the news media. However, (1) models the system as a continuous
process, rather than a discrete one. Thus, for a true quantitative analysis one would have to
compare averages of our continuous data to the discrete data released by the media each
week.

The revenue R(7) will simply be the product of A(7), the amount of money earned per
screen per week, and S(7), the number of screens on which the film is being presented.
Thus,

dé¢ - -
— = SA. 2
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At first glance, it may seem odd to treat § and A, which is a ratio with denominator S, as
separate variables in our model. Though clearly not independent in the statistical sense, this
is not relevant in the differential equation context, where we consider only the parameters
in the equations to be probabilistic. We can transform variables as we see fit, so we choose
to use S and A since the raw data from the studios comes in this form. This transformation
then requires that sometimes their product will appear together in the equations, as in the
right-hand side of (2).

We know the initial gross G (0) is zero, and clearly the final cumulative box-office gross
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G (00) can be computed by integrating the weekly revenue R(7) over all time, so we obtain
B o © __
G(o0) = / Rdt = / SAdr. 3)
0 0

A and S will be affected by audience reaction to the film. To model this effect, we
introduce a measurable characteristic Hg,, the percentage of viewers who have a negative
reaction to the film. This fraction is related to the ‘favorability rating’ studios compute
after test screenings. It is interesting to note that distributors often will not release films
with favorability ratings less than 80% (Puig, 2000), which in our model corresponds to an
Hg, of 0-2.

Note that Hg, is essentially a psychological variable; that is, it is an inherent measure
of how the average person will react to a film, and as such is a metric for the quality of the
film as experienced by the general public. Since we are considering nationwide averages,
we expect this proportion to be a constant. (The effect of bad word of mouth on a film,
which is certainly not constant, is modeled in Section 2.2.4.) There are rare exceptions,
such as Star Wars or Lord of the Rings movies, where a core set of fans, with predictably
different reactions from the general public, may attend the first screenings, impervious to
reviews or marketing.

We denote the total number of viewers who have a negative reaction to the film at time
f by H (f). Note that H includes all viewers since release who have not liked the film. Our
model assumes that H is governed by the evolution equation

A HySA

w=—p - HO=0 (4)

where P is the average ticket price. (Note that A/ P is the number of people who attend a
movie at a particular screen.) From (2) and (4) we obtain the expressions

dH  Hg dG . P -
LR and 6= —H. (5)
dr P dr Hy,

At first glance it may seem somewhat counterintuitive that G is proportional to H, the
number of people who did not like the film. But both G and H are proportional to the total
number of people who saw the film, and hence they are both proportional to one another.

Examination of the data indicates that, in the main, the two components of revenue,
namely A and S, decrease with time since release. We choose the simplest model for this
decrease, specifically exponential decay. Then A and S will each have an inherent, natural
decay rate, denoted by @4 and &g, respectively. Thus we expect the governing equations
for A and S to resemble

dA - ds = & ©
- = —u , —= = —u ,
dt A dt §

under certain characteristic conditions.
Scilicet, we declare that the decay rate for A will be &4 when

#1: no one who sees the movie goes to see it again;
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#2: reviews of the film are mixed in such a way that they do not affect attendance;
#3: the film has no advertising or marketing budget;
#4: no one has a negative reaction to the film (100% favorability rating).

Clearly these are artificial conditions, and in the next section we will introduce additional
terms into (6) to model what happens as each of these conditions is violated. We note that
with the assumptions stated, @4 includes effects of the ‘drawing power’ of the cast, the
film’s genre, release date, and budget, as well as other factors which affect attendance but
which we have not explicitly enumerated.

Similarly, the decay rate for S will be &g when no one is attending the film (i.e. A = 0),
and hence we expect it to be quite high. In other words, if no one is attending the film,
exhibitors will very rapidly cease showing it, and thus § — 0. Again, &g includes other
effects not explicitly enumerated in the model. However, in contrast to &4, which includes
effects of various factors on public perception and subsequent attendance, &g includes
effects of various factors on exhibitor action.

2.2 Decay rate of attendance

We now model each of the terms listed above that influence the decay rate of A. As noted
above, A is proportional to the weekly attendance at a single screen, and thus arguments
made about attendance carry over to A. The true evolution equation for A is assembled by
considering exactly how each of the enumerated parameters influences the inherent decay
rate a4.

2.2.1  Relaxing restriction #1: repeat viewing. Let D be the number of times the
average filmgoer would see the film. Clearly D has a lower bound of 1, but for certain
blockbuster movies can increase many percentage points above that.

We note that the solution to (6) is given by a simple exponential, and that the total
revenue per screen is

/m&aﬁz/mﬁmnﬂﬁ&=igl
0 0

oA

However, if each viewer sees the film D times, the total revenue per screen is given by
© . _AQ . S FID o
/ mnm=Dél=/ A(0)e™1/P g7,
0 aa 0

Thus, if the attendance increases by a factor k, then the decay rate decreases by the same
factor k. It is this property of exponential behavior which we use to modify our model for
the decay rate to include the effects of D.

2.2.2  Relaxing restriction #2: the effect of reviews. Similarly, let movie critics affect
the attendance of the film in such a way that 14 € times as many people go as if
there were no reviews. (We expect € to be a very small number, perhaps |e|] < 0-05.)
Interestingly, Eliashberg & Shugan (1997) claim that while critical reviews are correlated
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with cumulative box-office receipts, they have almost no effect on early box-office
performance. This makes sense, as it often takes a while for critical reviews to be
disseminated to the bulk of the moviegoing public. If € is positive, then this will cause
a slight reduction in the intrinsic decay rate. By the argument above, we see that including
factors #1 and #2 will then change the first equation in (6) to

dA T

di = D(+e

Careful readers will note that we could have just defined &4 = @4 /D(1+¢€) earlier and
eliminated this discussion entirely. However, this would have been equivalent to lumping
reviews and repeat viewings in the same category with genre, cast, budget, etc. But the
nature of those parameters is quite different. From a large database of previously made
films with similar genres, casts, budgets, release dates, etc., one should be able to obtain
a reasonable a priori estimate for & 4. However, the parameters D and € can be estimated
with a degree of accuracy only after a movie has been released. Therefore, these effects are
listed separately. (For more discussion of parameter estimation issues, see Section 2.5.)

2.2.3  Relaxing restriction #3: advertising. A large portion of the average movie’s
budget is devoted to advertising (MPAA, 1999). Pre-release advertising is purchased to
drive up the value of A(0), while post-release advertising is purchased to keep the weekly
attendance as high as possible. Thus the effect of increasing the rate of money M spent on
advertising and marketing is to decrease the decay rate. This is based on our assumption
that A will always decrease. In practice it is possible for A to increase.

The effectiveness of the marketing dollar is going to be diluted by the number of
markets in which advertising is purchased. Since we are examining nationwide averages,
the number of markets translates into the number of screens, so the relevant variable is
really M/ S.

Apart from the most recent effort by Eliashberg et al. (2000), most of the other attempts
at modeling cinematic box-office have not included the effect of advertising explicitly in
their mathematical formulation. In fact, even though the Bass model and most models
derived from it (as summarized in Mahajan et al. (1990)) can be written in ordinary
differential equation form, most investigators (Eliashberg et al., 2000; De Vany & Walls,
1996, 1999; Neelamegham & Chintagunta, 1999) adopt a strictly Bayesian approach.

We assume that the effect of advertising should appear functionally as a factor
multiplying the decay rate. As implied by #3, the factor should be unity when the amount
of advertising is zero. As M — oo, we would expect the increased advertising to cause
the attendance to remain nearly constant, driving the modified decay rate to zero. Thus
the factor should be zero when the advertising budget is infinite. There are many ways to
model such a factor; we choose a simple rational function:

1 S
1+7M/S§ 7M+S

where y is a constant describing the effectiveness of M in reducing the decay rate. This
idea of a ‘saturation effect’, where the added utility of an additional incremental resource



48 D. A. EDWARDS AND R. BUCKMIRE

decreases with increasing resources, appears in such varied areas as insurance pricing
(Bowers et al., 1986) and population dynamics (Murray, 1993).

It should be noted that in general M will depend on #, as advertising is usually
concentrated in the weeks surrounding the release. In addition, dollars may be pulled from a
poorly performing movie and spent on one for which the rate of return may be higher. This
assumption would make M a time-dependent variable whose evolution equation would
have to be modeled as well. However, for simplicity in this paper we assume that M is a
constant.

2.2.4  Relaxing restriction #4: word of mouth. Lastly we consider the effect of the
audience reaction, which produces a similar perturbation of the decay rate. An important
nuance here is that not only is Hg, the percentage of viewers who dislike the film,
important, but so is H , the total number of attendees to date who dislike the film. If the
vast percentage of people who see the film hate it, but only 10 people saw the picture, this
has minimal impact on revenue. Similarly, if 10 000 people hate the film, but this reflects
only 5% of the people who viewed the film, then this also may have minimal impact on
the film’s box-office performance. We combine the two effects multiplicatively to produce
a factor S Hy, H, where B is a constant describing the effectiveness of H in increasing the
decay rate.
We choose to combine the effects from #3 and #4 additively, which produces our final
evolution equation for A:
dA s

E__D(He)[Sﬂ;M

+ BﬁH%] i
At this stage it is convenient to make a change of variables using (5) in the above to obtain

%GH%]A. 7

7

E__D(1+e)[§+77M

+

2.3 Decay rate of screens

Next we consider the evolution over time of the number of screens on which a film is
shown. In contrast to the attendance rate, there are instances where the number of screens
does not simply decrease over time.

In a ‘platform release’, a movie is initially released on a small number of screens. If as
time goes on there is enough positive word of mouth to justify it, the number of screens on
which the movie is playing slowly increases. Clearly there must be some point at which
a maximum number of screens is reached, and then the number of screens decays with
time after that. More typical is the ‘wide release’ pattern. In a wide release, the number of
screens on which the movie is presented is initially large and does not increase, but usually
simply decreases with time.

These two kinds of ‘release pattern’ behavior must be described by the differential
equation for S. First, if the number of screens is small (below some critical threshold Sy)
and the weekly attendance per screen average, A, is high, then the number of screens
on which the movie is playing should increase. This is the platform release pattern.
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Furthermore, if S > S,, then the number of screens should strictly decay, no matter the
value of A. This is the ‘wide release’ pattern.
The following evolution equation has the requisite properties:

as as(S— S A (8)
— = — — .
df 5 A

max

Here Amax corresponds to the capacity of each screen location; hence the fraction A / Amax
can never be larger than 1. (Note that for simplicity we assume that all screens have the
same capacity.) Thus if § > S,, dS / df < 0 and the number of screens decreases. However,
if § < S«, then for large values of Aitis possible for dsS /df > 0 and the number of screens
to increase.

We note from (8) that we have hypothesized that S depends only on A, and in a
relatively straightforward manner. We have omitted considerations of advertising, etc., as
in (7). This is because for the exhibitor, the income per screen is the main factor used to
decide whether to continue showing a film, and it is that income, not the number of screens,
which is directly affected by advertising, reviews, word of mouth, etc., as modeled directly
in (7).

In addition, by modeling the evolution of S in this way, we are neglecting the effect
of the rental contract, which keeps the value of § nearly fixed for the first few weeks
after a film’s release. We expect that this defect in the model will be felt most keenly for
poorly received films, where our model would (correctly) direct exhibitors to pull a poorly
performing film when to do so would violate their contract. We discuss this issue more in
Section 7, as well as possible alternative models.

2.4  Scaling the equations

Our mathematical model is represented by (2), (7), and (8). We scale the problem by letting

S@t) = SS(t), At) = #, G(t) = % ¢ = fas. ©)

* max S* max

After substituting these scalings into (8) one obtains

5 =6 (10)

Turning our attention to (2), if we again use information from (9) we have the
following:

dG

5 =54 GO=o. (11)

Finally, making our substitutions into (7), we obtain

dA S
E:— (m‘i‘ﬂ ) (]2)
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where

M Lo 1 ﬂ_,BNHé)S*AmaX
V=5 T asD+e) =~ Pas

(13)
Note that we have constructed our system such that all the parameters lie in only one
evolution equation—the one for A.

Our model is now given by (10)—(12). Lastly, we specify initial conditions for A and
S:

A(0) = Ao, S(0) = So. (14)

There are three unknown parameters: «, 8 and y. « reflects the relative importance of
screen decay rate versus the attendance decay rate. 8 incorporates the effect of word of
mouth. y is the effectiveness of the marketing and advertising campaigns.

2.5 Some remarks on parameter estimation

We conclude this section by characterizing the dependence of the various parameters in
our model. They fall into several categories or groups:

(A) Parameters fixed for all movies, and hence can be estimated a priori from a database.
These include P, the ticket price, Amax, the maximum revenue that can be generated
per screen, and Sy, the critical threshold beyond which the number of screens cannot
increase.

(B) Parameters that depend on genre, cast, etc., which can also be estimated a priori
from a database. These include &4, the natural decay rate for attendance, &g, the
natural decay rate for screens, and ,3 , the effect of word-of-mouth.

(C) Parameters that depend on each individual movie, and hence must be estimated
during the movie’s lifetime. M, the amount spent on advertising, should be known
before or shortly after the movie’s release, as will €, the critical rating. D, the number
of times an average moviegoer will see the film, y, the effectiveness of advertising,
and Hg,, the unfavorability proportion, can be estimated during the run of the movie.

The fact that these parameters must be estimated on the fly is not as detrimental to the
model as it might first appear. Due to the initial contractual obligation, distributors are in
essence locked in to a fixed run. It is only after the period ends (and several weeks’ worth
of data has been tabulated) that distributors must make decisions about where to spend
advertising dollars most effectively, which contracts to renew, etc.

With an appropriately designed model, a simple minimization procedure implemented
in a program such as Matlab can fit the solutions of (10)—(12) to the data, thus generating
parameter estimates which can be used by the distributors for decision-making. It must
be noted that such a first estimate would be necessarily crude due to the limited number
of data points available. However, with each succeeding week the model could be refined
incorporating new data as they become available. Sawhney & Eliashberg (1996) implement
just such a refinement scheme in their probabilistic model. (For more details of how such
a process could be carried out in practice, see Section 6.)
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3. Asymptotic results

Equations (10)—(12) are a complicated system that cannot be solved analytically in closed
form. However, in certain parameter regimes, we may obtain closed-form asymptotic
results.

3.1 One-parameter reductions

3.1.1 o — oo. We begin by focusing on the case where « — o0. This corresponds to
the case where @4 >> as. This happens when the response time of the screens is very long;
i.e. because of contractual or other restrictions, the number of screens remains relatively
constant no matter how the movie is performing. It also corresponds to the case where the
type of film is such that we expect attendance to decay quickly.

With ¢ — o0, there is no balance on the right-hand side of (12) other than A = 0.
Therefore, there must be an initial layer during which the attendance decays rapidly. Since
A and § are initially O(1), the dG/d¢ term in (11) must also be O(1). Thus both G and ¢
must be scaled in equal proportion and so we let

G(t) =a %g(1), t=a%%, a>0. (15)

Note that this corresponds to a small gross, since the attendance rate is dropping quickly.
With this substitution, one can see from (10) that S evolves on a time scale slower than
and hence on the 7 scale is fixed at the constant initial value Sy.

Substituting this result and (15) into (11) and (12), we have the following:

dg
E = SOA, (16)
dA So
a7 — _ T99)A, = , 17
o a(r; + Ba™"%g) r Sot (17

from which we have that a = 1. Solving (16) and (17), we obtain, to leading order in «,

A(r) = Age "7, (18)
_ SoAg(l —e™17)

ri

g(1) (19)
From the form of (10)—(12) we know that the steady state for S has to be § = 0. Therefore,
one could ask what happens on the long time scale ¢ where S decays. Since A(t = 00) =0
by (18), there is no change to G on the ¢ time scale.

312 o — 0. When a — 0, one can see from (12) that A evolves on a slower time
scale, and hence on this time scale A(f) = Ag. Substituting this result into (10) yields
St) = Ao+ (So — Ag)e™", (20)

where we have used (14).
On this time scale, G never approaches a constant because neither S nor A goes to zero,
and hence we must introduce a long time scale. Again, since A and § are initially O(1) on
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this time scale, we see that the dG/df term in (11) must also be O(1). Therefore, both G
and ¢t must be scaled in equal proportion and so we again use the scaling in (15). Note that
this corresponds to a large gross, which we would expect for a movie where the attendance
decays very slowly.

Substituting (15) into (10), we obtain

o g =—(S—A) —  S(1) = A(D). 1)

Note that this is acceptable since Ag = St = o0) = S(r = 0) = A(r = 0).
Substituting (15) and (21) into (11) and (12), we have the following:

ds _ 2

= A2, 22

i (22)
dA S

@l = g —— ~ag)A, 23

@ i 06<S+y+/301 8) (23)

from which we conclude that @ = 1/2 for a dominant balance. Combining these equations
yields

d2g
dr?

Equation (24) is a form of a logistic equation; in the Appendix we present a brief discussion
of the equation and its solution in order to introduce notation we shall use throughout this

paper.
From the Appendix it can be seen that (24) is just (54) with G = g, Gog = A(z), t=r1,
a = 0, and b = 28. Therefore, we may obtain our solutions from (55)—(57):

g+ =xAo/VB, =240/, (25)
o(1) = g4 tanh(%), A1) = Ag sech(%), (26)

dg dg 2
— 2858 Sy=a 24
Bg I % (0) 0 (24)

where in the last expression we have used (22).

3.1.3 B — oo. The case where g is very large corresponds to the case where the effect
of bad word of mouth is quite strong, causing the movie to close very quickly. In this case
there is no balance in (12), since the last term on the right-hand side is dominant. Therefore,
we must either introduce a fast time scale (corresponding to the movie closing quickly) to
make the left-hand side of (12) larger, scale G to make the G term smaller, or both.

Since A and § are initially O(1), we see that the dG /df term in (11) must also be O(1).
Therefore, both G and ¢ must be scaled in equal proportion, so we let

G(t) =B %g(1), T=p8%%, a>0, 27

in (12) to obtain

a 1—a
—=——4+8 A, )8
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from which we conclude that a = 1/2. Note that this implies that G is very small,

corresponding to a film that closes quickly. Substituting (27) with a = 1/2 into (10),

we see that S evolves on a slower time scale, and hence on the t scale, the number of

screens S is fixed at the constant initial value Sp. Again, this corresponds to a case where

the demise of the film is so rapid that there is not time to reduce the number of screens.
Finally, making the substitutions into (28) and (11), we have the following:

d

%8 _ 5o, (29)
dr
¢ _ So(—gA) = —g 38 48 0y = 04 ©0)=0 (30)
dfz - O g - g dT ’ dT - O 07 g - .

But (30) is just (54) with G = g, Go = SpAo,t = 7, a = 0, and b = 1. Therefore, we
may obtain our solutions from (55)—(57):

g+ = £/2S0 A0, =g+, (3D

g(t) =g+ tanh(%), A(t) = Ay sechz(%), (32)

where in the last expression we have used (29). Again we note that since A(t = o0) = 0
by (32), the fact that S decays on the ¢ time scale will not affect G.

3.2 B — 0: two-parameter reductions

When 8 — 0, some work will show that the resulting system is still not solvable in closed
form. Therefore, we are forced to look at combinations of parameter regimes when 8 — 0.

321 B—- 0,y - 0. When — Oand y — 0, the effect of word of mouth is quite
low, so the decay rate for A is basically the natural decay rate. In this case, the solution
of (12) becomes, to leading order in g,

A(t) = Age ™. (33)
Substituting (33) into (10) and solving subject to (14), we obtain

Ao(e’t _ efolt) _
St) = —— 4+ Spe ', o # 1. (34)
a—1
Note that (34) does not hold in the case & = 1, which is the case when the decay rates for
the screens and the average is the same. In this case, we have
S(t) = Agte " + Spe ', oa=1. (35)
Substituting (33)—(35) into (11) yields

Aoll — ef(a+l)t] Ao A(z)(l _ 6720&)
So + -
a+1 20(a — 1)

1 1 ¢ AoSo(1 — e

G(t) =

, a#£1, (36)
a—1
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322 B — 0,y — oo. Now we look at the case where 8 — 0 and y — oo. This
corresponds to the case where the effect of word of mouth is quite low, so the decay rate
for A is very long. Thus on this time scale A(t) = Ao, so (20) holds in this case as well.
Since A and § are initially O(1), we see that the dG /df term in (11) must also be O(1).
Therefore, both G and ¢ must be scaled in equal proportion and so we again use the scaling
in (27). Note that this implies that G is very large, corresponding to a film that does a lot of
business because the average stays high. Substituting (27) into (10), we have the following:

ﬂ“g =—(S—-A4) = S(t) = A(1). (38)

Equations (38) and (21) agree because both model the dynamics on long time scales.
Substituting (27) and (38) into (11), we obtain

dg_

= = A2, (39)

Substituting (27) and (38) into (12), we obtain, to leading orders,

po &4 A proag)a (40)
— =—a| —— .
dr Aty 8
In order for the B terms to match, a must equal 1/2. Therefore, (40) becomes, to leading
order,
dA A +g]A 41)
— =—a| —— .
dr VB2 8

If y8 -1/2 = 0O(1), then the system (39) and (41) cannot be solved in closed form.
Therefore, to obtain analytical results, we have two choices: the case where yf~1/? — oo
oryf~1/2 - 0.

We consider the former case first. In this case, we may combine (39) and (41) to obtain

d
C8 o agA? = —2ag S, d—g(O) = AZ, g(0) = 0. (42)
T

But (39) and (42) are just (22) and (24) with § = «. Therefore, our solutions are given
by (25), (26):

g+ = £Ao/a, ry =2A0Va, 43)
nt nt
g(t) =g+ tanh(7>, A(t) = Ag sech(T). (44)
1/2

Alternatively, if y8~"/= — 0, then the perturbation expansion needs to be done in y.
Thus, analogous to the above, we let

G(@) =y%g(r), t=y"%, a>0. (45)
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Again we have a large G and a long time scale, so (38) and (39) hold. Substituting (45)
and (38) into (12), we obtain, to leading orders,

. dA A a)a
— =—a|l —— .
Y x A+ry V8

We expect a dominant balance between the left-hand side and the first term in the right-
hand side, so we set a = 1. Hence we obtain
dA
— = —aA’
dr
where the second term vanishes because of the case we are examining.
Continuing to solve, we have

2
AgT

A(T) = _—.
@ 1+ Apart

g(1) = (46)

S
14+ Agat ’
Note that this is the only case where we have algebraic, rather than exponential, decay of
A.

4. Numerical results: varying parameters

In this section we discuss how the numerical results are computed, as well as the variance
of the solutions upon various parameters. Thus the sensitivity of the solution upon the
parameters which must be estimated can be obtained.

To illustrate the effect of varying the various dimensionless parameters in the problem,
we consider the specific case of Runaway Bride, which was the ninth highest-grossing film
for the North American box office between April 1, 1999 and April 1, 2000 (Beilinson,
2000). The following dimensionless parameters were estimated using the box-office data:

a=08350, p=39709, y =13228. (47)

In order to estimate the dimensionless parameters «, 8, and y, the data for each film
were loaded into a Matlab file. The 1sqcurvefit command was used to optimize the
parameters by minimizing the residual between the data and Matlab’s numerical solution
of the system (10)—(12). The numerical solution was transformed back into dimensional
variables before the optimization procedure so that the actual data (rather than scaled
versions) could be fitted.

4.1 Varying o

Figure 1 shows the effect of varying o on A, the weekly revenue per screen. Throughout the
paper, for graphing purposes the solutions have been transformed back into dimensional
variables. That is, the time scale is weeks and the other axis has dimensions of screens or
dollars.

Here the variation is about the ‘ideal’ value quoted in (47). Note that as « increases,
the decay rate of A increases, as expected. From (13), we note that the movie-dependent
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FIG. 1. Effect of varying « on A.Tn increasing order of thickness: « = 0-95, 1, 1-19, 1-38, and 1-57 times the
value in (47).

parameters in o are D and €. Thus, we see that if some fraction of the populace wants to
see the film repeatedly, or the reviews are good, this will boost attendance over time.

However, we note that there is not much difference in the graphs. Since the vast
proportion of moviegoers will not see the same film twice, D is bounded very close to
1, while € has been constrained between +0-05. Therefore, though A may be sensitive to
changes in «, its limited range means that as a practical matter « has little effect on the
solution. Since S and G depend on « only through A, the variations in those graphs with «
are similar.

4.2 Varying B

Figure 2 shows the effect of varying 8 on A. Note that as § increases, the decay rate of
A increases, as expected. From (13), we note that the movie-dependent parameter in S is
Hg,. Thus, if more people hate the movie, this will depress attendance over time.

Here there is a wide variation in the graphs due to the wide variation of 8 (nearly two
orders of magnitude each way). Since Hg, can vary widely between movies and 8 depends
on its square, a wide variation in f is possible.

S and G depend on S only through A, but the wide variations in A cause wide variations
in S and G, as shown in Figs 3 and 4.

4.3  Varying y

Figure 5 shows the effect of varying y on A. Note that as y increases, the decay rate of A
decreases, as expected. From (13), we note that the movie-dependent parameter in y is M.
Thus, if more advertising dollars are spent, this will increase attendance over time. Here



NORTH AMERICAN BOX-OFFICE DYNAMICS 57
A
1
10000 -

8000 -

6000 -
4000

2000

0 5 10 15 20
FIG. 2. Effect of varying 8 on A.In increasing order of thickness: B = 1/81,1/9, 1,9, and 81 times the value
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FIG. 3. Effect of varying 8 on S.In increasing order of thickness: 8 = 1/81,1/9, 1,9, and 81 times the value
in (47).

there is a relatively modest effect of A on y, since here y varies only by around one order
of magnitude each way.

Though S depends on y only through A, we note from Fig. 6 that by increasing
advertising dollars and hence attendance, the distributor can also increase the number of
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screens on which the film is showing, at least in the short term. The multiplicative effects
of S and A can cause a rather substantial change in G, as shown in Fig. 7.
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4.4  Varying S,

We conclude this section with some remarks on the effect of S.. We note from Fig. 8 that
varying S, (here by a factor of 2 each way) has very little effect on A, with increasing the
number of screens increasing the attendance slightly. This small effect is expected, as Si
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i

is dictated by industry decision-making processes and does not reflect the choices of the
public.

However, in Fig. 9 we see that varying S, even by a small amount causes wide
variations in the number of screens on which a film is shown. This sensitive dependence
makes sense, as it is exactly the value of S, that determines exactly how the studios
distribute their films. This wide variation in S overcomes the small variation in A when
the two are multiplied, thus producing moderate variation in grosses, as shown in Fig. 10.

5. Numerical results: comparison with data

In this section we discuss comparisons between actual box-office data and the results of
numerical simulations using our model.

The ‘weekend box-office estimates’ announced in the mass media on Sundays are
actually produced by the studios themselves, and are hence unreliable. The official, verified
box-office numbers are usually available in the Tuesday edition of the Los Angeles Times as
well as Variety and the Hollywood Reporter. Almost all of these media outlets use Exhibitor
Relations, Inc. as the source of their data. A number of websites have developed which
are devoted to maintaining archival databases of this box-office data; we chose Beilinson
(2000) as our source. This website claims to contain box-office data for every film released
in North America since 1997.

We looked at revenue data for the North American box office between April 1, 1999
and April 1, 2000. For this period we selected three films from separate parts of the revenue
spectrum: Runaway Bride (9th of 442), At First Sight (67th of 442) and Jawbreaker (166th
of 442). In the following sections we shall describe the individual features of the box-office
behavior of these three films and provide numerical and graphical results which indicate
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that the mathematical model derived in this paper is flexible enough to encompass them
all.
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5.1 Runaway Bride

As one of the top ten grossing films of the period examined, Runaway Bride is a good
example of a blockbuster. A blockbuster film is one which grosses an exceedingly large
amount of money (customarily over 100 million dollars). There are usually only a few
blockbusters per year. Blockbusters are hard to produce and almost impossible to predict
(Rosen, 1981). In the last decade, the movie industry has modified its release pattern
so that the studios have become more geared towards revenue from a few blockbuster
movies. More recently, they have focused energy on increasing the number of blockbusters
produced. In fact, in the period studied for this paper there were a record 21 movies
which broke the 100 million dollar barrier, and four made over 200 million dollars
(Beilinson, 2000). These movies are easily recognizable. They are released in a blizzard of
amultimillion dollar marketing/advertising campaign consisting of fast-food marketing tie-
ins, hit music videos, celebrity interviews, billboards, interactive websites and television
commercials. They are incredibly expensive to produce and market, but can also generate
huge amounts of revenue for the distributors (studios) and exhibitors.

The box-office behavior of a blockbuster is almost always geared around the opening
weekend gross. The idea is that the release of the blockbuster becomes an ‘event’ and
the public rushes to see the movie at the first available time (opening weekend). Thus
blockbusters are released on a huge number of screens (2500-3000 screen openings are
becoming commonplace) and generate a significant amount of gross in the first few days
of release. In fact, since opening-weekend gross is used as a crude heuristic estimate of
final gross, such figures are closely scrutinized for wide-release films to identify potential
blockbusters.

After the initial release, the second weekend box-office gross is also important. If a
film has a reduction in weekend gross of more than 25%, its chance at profitability may
be in jeopardy and the film may be considered to be a disappointment. Titanic, which
has the highest North American box-office gross of any film (Beilinson, 2000), earned
that title in part because it was able to sustain weekend North American grosses of at
least twenty million dollars for each of its first ten weeks. Another characteristic of a
blockbuster’s box-office gross is the length of time which it remains on the box-office
charts. Most films disappear from the weekly box-office rankings within the first or second
month. Blockbusters often remain on the box-office charts for half a year or more.

Once the dimensionless parameters in (47) have been computed, they can be translated
back into dimensional parameters using (13). We again classify the parameters into groups
as in Section 2.5:

Group A: P =5.08, Amax = 22860, S, = 8750.

The value for P comes from MPAA (1999). The value of Apax arises from assuming that
on average, each screen has 250 seats, shows a film 18 times a week, and has an average
ticket price given by P. The value of S is several times higher than the number of screens
on which even the largest-release film would be shown. However, from (8) we note that S,
is the value beyond which the screens would not be increased if every seat in every theatre
were filled. Since that never happens, an effective limit is reached for smaller values of
A / Amax, Which implies a large value of S,.

Group B: a5 = %, B =107".



NORTH AMERICAN BOX-OFFICE DYNAMICS 63

The value for &g (which is measured in inverse weeks) was estimated by noting that since
there are usually three-week contractual obligations, the number of screens cannot decay
any faster than that, even if A=0.

We note that 8 is simply a constant of proportionality to relate the strength of negative
word-of-mouth, as expressed in Hg,. Since we do not have access to values of He, (the
data from test screenings is proprietary), for our purposes it is sufficient to provide a rough
estimate that leads to reasonable Hg, values (namely, values less than 1 and values that
decrease with more successful movies). In practice, a distributor would do just the reverse:
given a set of previously released films with values for Hy, and B, the distributor could
calculate j for each genre.

Given the dimensionless parameters, how do we estimate the dimensional parameters?
First, we see from (13) that we have all the components of the 8 equation except Hg,. Upon
solving, we obtain

Heq, = 0-0580, (48)

a low number consistent with the movie’s popularity.

For the y equation, both M and y are unknown. In practice, a manager would know the
value of M, and would want to estimate the effectiveness of the advertising through y. If
y is small, then more advertising may not be warranted. Also, if ¥ has been estimated,
the effect of changes in future advertising budgets may be ascertained. Unfortunately,
we do not have the distributor’s luxury of having hard and fast data for M. Instead, we
noted from MPAA (1999) that the average studio film has marketing expenses of 24-53
million dollars for marketing and 6-52 million dollars for advertising. Since M is a rate at
which advertising dollars are spent, we multiplied by &g to obtain a characteristic rate of
advertising dollars spent, given by

M =103 x 10". (49)
With the value of M given in (49), we obtain the following value for y:
7 =112x 1073 (50)

For the « equation, &g, D, and € are unknown. We expect that upon the film’s release,
the reviews can be categorized and assigned an approximate numerical value of € given
their content. In addition, filmgoer surveys should provide a rough estimate of D. Then
these values can be used to calculate @g for each genre. For Runaway Bride, the reviews
were mixed, but the movie was popular, so we let ¢ = 0 and D = 1-02. This led to the
following calculated value for ag:

s = 0-284. (51)

Figure 11 shows the prediction of the model for the gross receipts G of Runaway Bride
using the parameters in (47). Note that we have data for nearly six months from the box-
office charts, and so certainly in terms of length of run, the film qualifies as a blockbuster.

Figure 12 shows the prediction of the model for the number of screens S using the
parameters in (47). We note that with the parameters used, the model predicts a growth in
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F1G. 12. Screens for Runaway Bride. Curve: prediction. Circles: actual data.

the number of screens, but overestimates the small uptick actually seen in week 4. However,
the agreement is qualitatively good.

Figure 13 shows the prediction of the model for the per-screen revenue A using the
parameters in (47). Note that the modeling errors in A and S cancel out when multiplied
together, thus producing the good agreement for G in Fig. 11. Here we note that we are
unable to model the uptick in attendance for the second week. This is because, unlike (10),
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which allows a growth in the number of screens, (12) does not allow a growth in attendance
under any circumstances. Though this type of behavior is highly unusual (as will be seen
later), any second-generation model should be able to capture this behavior.

Though occasionally seen in blockbusters, this rise in attendance is more indicative of
a ‘sleeper’. Due to a small marketing budget or a low initial release, such films are often
predicted to gross only a small amount. However, due to positive word of mouth, reviews,
or awards, the films gain in attendance. A typical example of such a film is The Blair Witch
Project. Such films are initially released on a modest number of screens, where audience
reaction engenders a relatively high per-screen average. Following (10), the film is then
released on more and more screens, leading to more people seeing the film. This causes
positive feedback, which will peak a movie’s revenue later in the run than a traditional
release.

5.2 Jawbreaker

Jawbreaker, which grossed 166th out of 442 movies surveyed, was one of the worst
performers in the time period. Though it grossed more than 276 other movies, recall that the
measurement is total gross receipts. The vast majority of the films rated below Jawbreaker
were independent or foreign films screened in only a few locations which had no possibility
of making large amounts of money. Thus the per screen average gross for Jawbreaker was
among the worst we encountered.

Such an unsuccessful film is characterized as a bomb or a dud. These are generally
films which the studio had supported with large production and marketing budgets in the
full expectation that they would be blockbusters. Instead, the studios neither recoup their
expenditures nor make a profit.
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FIG. 14. Attendance for Jawbreaker. Curve: prediction. Circles: actual data.

The dimensionless parameters estimated to apply for this film are
a = 0-3505, B = 730-3476, y = 22-6584. (52)

The reviews for Jawbreaker were almost uniformly bad; hence we take the lowest possible
value of €: ¢ = —0-05. We also note that with such a poor-performing film, people are not
apt to want to see it again, so we take D = 1. Since we do not know the exact value of the
advertising, we again pick the average value given in (49). Following the same techniques
as in Section 5.1, we obtain

He, = 07863, as =0-111, y = 0-0192.

Audiences did not seem to like the movie either, which corresponds to the extremely high
value of Heg,. As discussed in Sections 4.1 and 4.2, note that the value of o does not change
very much between a good film and a bad film, while the value of 8 changes dramatically—
here by several orders of magnitude. Note that this puts us in the asymptotic case discussed
in Section 3.1.3.

Note the higher value of y, which would seem to indicate that advertising is more
effective in this case than in that of a blockbuster like Runaway Bride. The key is to
understand that in this case the advertising would act to counteract bad word of mouth,
rather than enhance positive word of mouth, as in the case of a blockbuster. However, just
because advertising may be effective does not mean it would be cost-efficient.

Figure 14 shows the prediction of the model for the per-screen revenue A for
Jawbreaker using the parameters in (52). Note that, as is typical of bombs, the movie
was pulled from theatres after only three weeks. This is due to the plummeting attendance
rate, which is predicted well by our model.
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However, our model is not equipped to deal with precipitous declines in the number
of screens, as shown in Fig. 15. By our assumptions in Section 2.1, our model can handle
only exponential decay, even in the case of nonexistent attendance. Therefore, more refined
models should include nonlinear effects to reduce the number of screens more quickly in
the case of low attendance.

Because of our inability to model the screens well, even the small errors in the
prediction for A will be magnified when predicting the gross. Thus, even in the optimum
case the model does not predict the gross that well, as can be seen in Fig. 16.

5.3 At First Sight

We have now examined two movies from very different ends of the economic spectrum. In
one case, the model works quite well, while in another, the agreement is more qualitative
than quantitative. Thus we examine another film to see if we can identify patterns and
characteristics of movies which our model simulates well.

We conclude by examining the film At First Sight, which grossed 67th out of 442
movies surveyed, putting it solidly in the middle of large-release big-budget films. The
dimensionless parameters estimated to apply for this film are

a = 1-2688, B = 370779, y = 17-0929. (53)

The reviews for At First Sight were mixed-to-negative, so we take ¢ = —0-01. We take
D = 1 again as well. Since we do not know the exact value of the advertising, we again
pick the average value given in (49). Following the same techniques as in Section 5.1, we
obtain

Hg, = 0-1772, as = 0-419, y = 0-0145.
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FIG. 16. Gross for Jawbreaker. Curve: prediction. Circles: actual data.

As this film lay in between Runaway Bride and Jawbreaker in terms of gross receipts, it is
reasonable that the value of Hg, should be between them, and indeed our estimate confirms
this. Note that once again the value of 8 has changed dramatically with the moderate
change in Hg,.

We also note that the value for y lies between the values for the other two films, as
expected since the effect of negative word of mouth also lies between the previous two
films.

Figure 17 shows the prediction of the model for the gross receipts G of At First Sight
using the parameters in (53). Note that the film ran for ten weeks, which puts it midway
between the two previously considered cases. Here we see that our model predicts the gross
well for a moderately successful movie.

Figure 18 shows the prediction of the model for the per-screen revenue A using the
parameters in (53). We note that though the data drop nearly exponentially, our model
overestimates the attendance at the beginning and underestimates it at the end.

The reasons for the discrepancy can be discerned by examining Fig. 19, which shows
the prediction of the model for the number of screens S using the parameters in (53).
Using our model, the attendance data would indicate a reduction in the number of screens,
as indicated by the line in the graph. However, we see that due to contractual obligations,
the number of screens was fixed at an artificially high level for the first four weeks.

After the contract expired, there was a drastic reduction in the number of screens as the
distributor rushed to cut its losses. Therefore, even though the revenue per screen A was
respectable, since the number of screens was low, the weekly revenue was not high enough
to justify an extended run. This can be further justified by noting from Fig. 13 that in the
latter half of its run, the A figures for Runaway Bride were roughly the same as those for At
First Sight, but Runaway Bride continued to run since the number of screens S was several
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times higher (see Fig. 12), and hence the weekly revenue was larger. In addition, Runaway
Bride had established itself as a moneymaker over the beginning of its run, and hence it
was a better bet to continue to produce substantial amounts of revenue.

This situation points out two facets of the movie business which any refined box-office
model must incorporate. First, some modeling of the contractual limitation on § must be
included, if in no other way than imposing S = Sy for r € [0, fex], Where 7 is the
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F1G. 19. Screens for At First Sight. Curve: prediction. Circles: actual data.

contract expiration date. This type of model would keep the system autonomous, but a
more accurate model would then have to take into account the revenue history over those
three weeks (perhaps through G (ex)) to predict the behavior of the screens.

Second, we see that the differential equation (10) for S should probably depend on
R directly, as it is considerations of weekly revenue that spur distributor and exhibitor
decisions about the number of screens on which to show a film.

6. For the manager

A management model is useful only if it can be used in practice to help a company obtain
its objectives. We present briefly a strategy for using the proposed model to do just that.

The first step is an application of the model to several years’ of box office data. This
will then yield the Group A parameters. Each of the movies must be classified according
to genre and other characteristics in order to yield a picture of the Group B parameters for
each category.

We note that with this background information in hand, certain weaknesses of the
model can be minimized. In particular, if the model tends to under- or overestimate A
and § for a particular genre in order to obtain a good estimate for G, this information can
be used to adjust the values of A and § predicted by the model to real-life estimates.

Due to the three-week contract period, an exhibitor or distributor will always have three
weeks’ worth of data to use when performing a regression analysis. Once the parameters
have been estimated, the manager can then easily input them into a Matlab ODE solver to
extrapolate the model results to future weeks. Such an extrapolation will allow a manager
not only to see how attendance and the gross will vary, but how the number of screens
should be adjusted to enhance profits.
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The same solver will also allow the manager to see how varying the parameters will
affect the gross, as in Section 4. The manager can estimate from y the effectiveness a
continued advertising campaign might have. The manager can see from Hg, the effect of
word of mouth.

Once another week’s worth of data have been published, then the process can be
repeated and refined. Trend lines will be particularly important in this iterative process. In
particular, are the estimates for Hg, increasing or decreasing? If this is week n, how do the
predictions for S at week n 4 1 compare between this week’s and last week’s predictions?
How well did last week’s model predict this week’s value for A? By examining these and
other questions, managers will obtain the answers needed to adjust marketing campaigns
and number of screens, which are basically the two variables at their disposal.

7. Conclusions

The filmmaking business is inherently a risky one. The budget for the entire film is spent
before even one person purchases a ticket, and the product is one which the bulk of the
customers will ‘use’ only once. The continued appearance of bombs (very unprofitable
films) indicates that customer preferences are notoriously difficult to predict a priori. As De
Vany & Walls (1999) discuss in their well-titled paper ‘Uncertainty in the Movie Industry:
Does Star Power Reduce the Terror of the Box Office?’, almost any distribution of movie
revenues is possible. Box-office performance has a probability distribution with infinite
variance. However, a mathematical model that would predict the eventual gross of a film
given initial performance data would be extremely helpful to distributors when they plan
their future advertising budgets, negotiate for the number of screens on which to show a
film, etc. This is precisely what we have attempted to present in this paper.

Previous authors (Sawhney & Eliashberg, 1996; De Vany & Walls, 1996, 1999;
Neelamegham & Chintagunta, 1999; Eliashberg et al., 2000) have used probabilistic
models to estimate audience reaction and extrapolate total gross. In contrast, in this paper
we use a deterministic model, and assume that the parameters in the model are probabilistic
and hence must be estimated from the data. This eliminates debate over which distribution
the parameters obey, since they are estimated for each film.

Our model consists of three coupled nonlinear ordinary differential equations for the
unknowns: A, which is related to attendance, S, which is the number of screens, and G,
the total gross. The parameters in the model fall into three main categories. ‘Group A’
parameters are fixed for all films, and are thus known a priori. ‘Group B’ parameters
are assumed to be the same for all films which share the same characteristics (genre,
production budget, etc.), and hence can be estimated with reasonable certainty from a
large database of previously released films. ‘Group C’ parameters are movie-dependent
and must be estimated from specific data for each film.

Just as one would expect from real-world experience, the key parameter in the
mathematical system is Hg,, which models the percentage of people who do not like the
film. The model depends on the square of this parameter, and thus even small changes in
Hg, can spell disaster or success for a film. The importance of this favorability percentage
cannot be overestimated. Hollywood studios regularly ‘test’ their films and it has been
reported that they will force directors to edit and re-edit their films until test audiences’
reactions reach levels of at least 80% favorable (Puig, 2000).
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In Section 3 we examined the model in several asymptotic limits. In each case we
obtained results with agreed with our business interpretation. We considered the case where
attendance drops off rapidly (¢« — 00) or slowly (¢ — 0) compared to other decay rates
in the problem. We were also able to model the case where there is extremely bad word of
mouth (8 — 00). When there was good word of mouth (8 — 0), the asymptotics required
splitting into several different cases depending on the size of y.

Since the full model cannot be solved analytically, we used Maple to solve the problem
numerically, and in Section 4 we examined the sensitivity of the solution to changes in
various parameters. Though the solution may be sensitive to changes in «, this parameter
remains bounded in a very narrow range due to the nature of the dimensional parameters
it includes. Since 8 « H, 20, the solutions vary greatly with changes in 8. It is also 8 which
must be estimated from any sort of predictive model, as it will provide guidance to the
distributors and exhibitors for their next decision. We also demonstrated the variance of
the solution with y, which mainly models the effectiveness of advertising.

To validate the model, we compared it with films from three different parts of the
revenue spectrum: a successful film (Runaway Bride), an unsuccessful film (Jawbreaker),
and a moderately successful film (At First Sight). We found very good agreement with
the first and third films, and qualitatively good agreement with the second. Thus, we have
confidence that our model has the potential to predict box-office grosses, though clearly the
more successful the film, the better the prediction. In some sense, this is acceptable, since
studios can recognize poorly performing films already and cut their losses. It is the task
of identifying which films will be successful that managers need to accomplish relatively
quickly and the algorithm presented here assists in the completion of this task.

In the context of fitting the data, we found several deficits of this first model that would
need to be addressed in any further work. First, (12) cannot model attendance rates that
peak after a few weeks, as was the case with Runaway Bride.

Second, as evidenced in the case of At First Sight, due to the contractual obligations
of the exhibition license the number of screens on which a film is initially shown for the
first few weeks can be much higher than that predicted by the model. Such contractual
obligations are standard in the business, and can account for the bulk of the gross for a
moderately performing film. (Note from Fig. 19 that almost 90% of the gross occurred
during the contract period.)

Thus, in a more refined model, (10) must include the effects of this contract period.
If #.on is the end of the contract period, a possible replacement for (10) would be the
following:

ds
S() = S0, 0< 1< teon, E =—(S—=f(A), 1= tcon
Note that because of the contract period, exhibitors have additional information at their
disposal—namely the data for A for the number of weeks in the contract. Thus, f(A) may
be modeled as the average of A over several weeks, the speed at which A has changed over
the last few weeks, or some combination of the two.

Third, sound business practice dictates that the number of screens on which a film is
exhibited must be related to the weekly revenue the film is producing, and this is indicated
in the data for At First Sight. Equation (10) does not include such a direct dependence.

Despite these flaws, the agreement in Section 5 between actual box-office data and
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numerical prediction of grosses from the model shows that the mathematical modeling
approach herein (namely a deterministic one) has great promise to describe and predict
box-office grosses, and we expect the agreement only to improve with the refinements
suggested above.

Future work would include the refinement of the model as a predictive tool. To
accomplish this, each week’s box office data would be incorporated into the analysis as
they are published, thus improving the parameter estimates and hence the predictions. In
addition, to be more useful, the model should incorporate the distributor’s revenue based on
the percentage of the gross they retain from the exhibitors. The model could then actually
be used by managers on either side of the exhibitor/distributor divide to use the predictions
to optimize their balance sheet.

However, the goal of this paper of presenting a differential-equation-based model of
cinematic box-office dynamics has been clearly met. Without disparaging the probability-
and statistics-based approaches of prior researchers, our approach appears to have
produced output which mimics the data just as accurately, while using mathematical
techniques to minimize the number of variables that must be estimated probabilistically.
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Appendix: the logistic equation

In order to simplify the analysis in various asymptotic limits, we derive a result we use
repeatedly. Consider the following logistic equation:

d’G dG dG
— = bG)—, —(0) = Gy, G(0) =0, 54
2 (a+ )dt dt() 0 0) (54)

where a and b are constants. The solution of (54) is

G.G_(1 —e 2!
Gy = &xG-d=e ™) (55)
G_ — G+ e—r2’

226G b(Gy —G_
Go—_ %1 | 0 . bGy ).

< 56
b \p2 ' b 2 2 (56)

We note from (56) that G_ < 0 and G4 > 0. Thus , > 0 and G(0c0) = G . We will also
need dG/d¢t, which is given by

dG  Goe ™(G_ —G,)?
dt (G- —Gpe )2

(57)



