Math 46: X hour of 5/12/11: Degenerate Fredholm Equations

Alex Barnett

May 12, 2011

We used Section 4.3.3, particularly Thms 4.12 and 4.13, to determine if the following had a solution, and then solve them. We made use of (4.31), the starred equation in lecture, a lot to get $u(x)$ once the \mathbf{c} vector was found.

Let K operator have kernel $k(x, y)=\sin x \sin y$, on the interval $[0, \pi]$
First: Find the eigenvalues and eigenfunctions of K :
[Your eigenspaces are orthogonal, which is unusual. What property of K caused this?]

Use this to solve the following:

1. $K u-u=\sin 2 x$
2. $K u-u=x$
(We can use Maple to get the integrals $\int_{0}^{\pi} x \sin (n x) d x=\pi(-1)^{n+1} / n$)
3. $K u=3 \sin 2 x$
4. $K u=3 \sin x$.
5. $K u-\frac{\pi}{2} u=x$
6. $K u-\frac{\pi}{2} u=\sin 3 x$

Answer key:

A is 1 -by- 1 matrix with entry $\pi / 2$. Spectrum of K is then $\pi / 2$ (multiplicity 1 , eigenfunction $\sin x$), and 0 (infinite multiplicity, eigenspace all functions orthog to $\left\{\beta_{j}\right\}$, i.e. orthog to $\left.\sin x\right)$

Orthogonality of eigenspaces with different eigenvalues occurred since K was symmetric. Note not all degenerate kernels are symmetric.

1. $c_{1}=0$ so $u=-\sin 2 x$
2. $c_{1}=\frac{\pi}{\pi / 2-1}$ so $u=\frac{\pi}{\pi / 2-1} \sin x-x$
3. No solution, RHS not in span of α 's.
4. Infinitely-nonunique solution, constrained only by $(\sin x, u)=3$. Then $u=$ any particular solution + all hogomogeneous solutions (to $K u=0$). $\operatorname{Eg}, u=\frac{6}{\pi} \sin x+$ (any function orthogonal to $\sin x$). May equally well write as $u=\frac{3}{2}+($ any function orthogonal to $\sin x)$.
5. λ is an eigenvalue. No solution since $f_{1} \neq 0$.
6. $f_{1}=0$ so consistent, $c_{1}=$ anything. So, $u(x)=\frac{2}{\pi}(-\sin 3 x+c \sin x)$, with c anything.
