Math 46, Applied Math (Spring 2011): Midterm 2

2 hours, 50 points total, 6 questions. Heed the available numbers of points. Good luck!

1. [6 points] Use integration by parts to find a 2-term asymptotic expansion for $I(\varepsilon)=\int_{0}^{\varepsilon} e^{-1 / t} d t$ in the small parameter $\varepsilon \rightarrow 0^{+}$.
[BONUS: prove that the remainder term satisfies the needed condition for an asymptotic expansion]
2. [6 points] Write the first 3 terms (i.e. trivial term plus two more) in the Neumann series for the solution of

$$
u(t)=12 t^{2}+\lambda \int_{0}^{t}(t-s) u(s) d s
$$

where $\lambda \in \mathbb{R}$ is some constant.
3. [9 points] Consider the integral operator $(K u)(x):=\int_{0}^{\pi} \sin 2 x \sin y u(y) d y$ acting on functions on $(0, \pi)$.
(a) Give the general solution to $K u(x)-3 u(x)=\sin x$, or explain why not possible.
(b) Give the general solution to $K u(x)=\sin x$, or explain why not possible.
(c) Give the general solution to $K u(x)=\sin 2 x$, or explain why not possible .
(d) What are all eigenvalue(s) (with multiplicity) and eigenspace(s) of this operator?
4. [10 points]
(a) By converting to a Sturm-Liouville problem, find all positive eigenvalues and eigenfunctions of the operator K which acts as $(K u)(x):=\int_{0}^{1} k(x, y) u(y) d y$, with kernel

$$
k(x, y)= \begin{cases}1-x, & y<x \\ 1-y, & y>x\end{cases}
$$

[Hint: you'll need to extract a boundary condition at each end.]
(b) Use the energy method on the SLP to show that there are no negative or zero eigenvalues. [If you couldn't get an SLP above, just demonstrate the energy method on the simplest SLP you can think of.]
5. [10 points]

A $1 \mathrm{D} 2 \pi$-periodic image f is blurred by applying a Fredholm operator K with convolution kernel $k(x, y)=k(x-y)$, with even, 2π-periodic aperture function

$$
k(s)=-\ln \left(2 \sin \left|\frac{s}{2}\right|\right)=\cos s+\frac{1}{2} \cos 2 s+\frac{1}{3} \cos 3 s+\cdots
$$

Recall that such an operator has eigenvalues $\lambda_{n}=\pi k_{n}, n=0,1, \ldots$, where k_{n} are the Fourier cosine coefficients of $k(s)$.
(a) Given the image $f(x)=\sin 7 x$ find the blurred image $g(x)=(K f)(x)$:
(b) Give a formula for the Fourier coefficients $\left(\hat{a}_{n}, \hat{b}_{n}\right)$ of the best reconstructed image \hat{f} given those $\left(A_{n}, B_{n}\right)$ of a measured blurry image g. Can all Fourier coefficients be reconstructed? (explain; you may assume no noise here)
(c) If noise of size 10^{-3} pollutes each Fourier coefficient of g, and a noise of size 0.1 (ie 10%) is acceptable in \hat{f}, how many coefficients should be reconstructed?
(d) The aperture function is unbounded, $\lim _{s \rightarrow 0} k(s)=\infty$. Is the aperture function in $L^{2}([-\pi, \pi])$? Prove it.
6. [9 points] Short-answer questions.
(a) Let K be a symmetric Fredholm operator with eigenfunctions $\left\{\phi_{n}\right\}_{n=1}^{\infty}$ and corresponding eigenvalues $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$. Either give the general solution to $K u-\lambda_{1} u=\phi_{2}$ or explain why not possible.
(b) Let $\left\{f_{n}\right\}$ be a complete orthogonal set. Prove that no non-trivial function g can be added to the set whilst maintaining orthogonality of the resulting set.
(c) Give an example of an interval and a sequence of functions that converge in L^{2} but not uniformly on that interval (sketching may help.)
[BONUS: give an example as in (c) but the other way round, i.e. uniform but not L^{2}]

Useful formulae:
non-oscillatory WKB approximation

$$
y=\frac{1}{\sqrt{k(x)}} e^{ \pm \frac{1}{\varepsilon} \int k(x) d x}
$$

Binomial

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\cdots
$$

Error function [note $\operatorname{erf}(0)=0$ and $\left.\lim _{z \rightarrow \infty} \operatorname{erf}(z)=1\right]$:

$$
\operatorname{erf}(z):=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-s^{2}} d s
$$

Euler relations

$$
e^{i \theta}=\cos \theta+i \sin \theta, \quad \cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}, \quad \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}
$$

Addition formulae

$$
\sin (x+y)=\sin x \cos y+\cos x \sin y, \quad \cos (x+y)=\cos x \cos y-\sin x \sin y
$$

Power-reduction identities

$$
\begin{aligned}
\cos ^{3} \theta & =\frac{1}{4}(3 \cos \theta+\cos 3 \theta) \\
\cos ^{2} \theta \sin \theta & =\frac{1}{4}(\sin \theta+\sin 3 \theta) \\
\cos \theta \sin ^{2} \theta & =\frac{1}{4}(\cos \theta-\cos 3 \theta) \\
\sin ^{3} \theta & =\frac{1}{4}(3 \sin \theta-\sin 3 \theta)
\end{aligned}
$$

Leibniz's formula

$$
\frac{d}{d x} \int_{a(x)}^{b(x)} f(x, t) d t=\int_{a(x)}^{b(x)} \frac{\partial f}{\partial x}(x, t) d t-a^{\prime}(x) f(x, a(x))+b^{\prime}(x) f(x, b(x))
$$

