Math 46, Applied Math (Spring 2011): Midterm 1

2 hours, 50 points total, 6 questions worth varying number of points

1. [9 points] A fluid of density ρ rests in a gravitational field strength g (units of acceleration). Surface waves at a frequency f (units of inverse time) may propagate in the fluid, and have wavelength λ. Let us first assume ρ, g, λ and f (and only these variables) are related by a physical law.
(a) How many (independent) dimensionless quantities are there? Give them. [Hint: a dimensions matrix will help].
(b) Write the most specific formula you can for how the frequency f must depend on the other three parameters.
(c) If now a fifth parameter, the surface tension s (units mass per time squared), is also involved in the physical law, use the Buckingham Pi Theorem to deduce the most specific formula for how f must depend on the other four parameters. [Hint: in your answer, f must only appear once.]
2. [11 points] A mass released from rest on an aging spring is described by the model

$$
m y^{\prime \prime}=-k e^{-a t} y, \quad y(0)=L, \quad y^{\prime}(0)=0
$$

where the dynamical variable $y(t)$ is the displacement of the mass vs time.
(a) What are the possible timescales ? [Hint: a dimensions matrix will help]
(b) Choosing an appropriate timescale to give a nonsingular problem in the limit of small aging rate a, and a lengthscale, non-dimensionalize the problem, and give the resulting small parameter ε :
(c) One choice of timescale results in the following non-dimensionalized IVP,

$$
y^{\prime \prime}=-\frac{1}{\varepsilon^{2}} e^{-t} y, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

Find the WKB approximation to the solution to this IVP (give your answer in terms of ε and elementary functions only):
[BONUS: until roughly what time t do you expect this to be accurate?]
3. [5 points] Find the leading order perturbation approximation of all roots of $\varepsilon x^{4}-x+1=0, \quad \varepsilon \ll 1$.
4. [7 points] Consider the following IVP, where ε is a small parameter,

$$
y^{\prime}=\frac{y}{1+\varepsilon y}, \quad y(0)=1
$$

(a) Use a perturbation expansion to find a 2-term approximation:
(b) Find the residual function of the unperturbed solution. Is it uniformly convergent to zero as $\varepsilon \rightarrow 0$, on $t \in(0, \infty)$?
5. [9 points] Use singular perturbation methods to find a uniform approximate solution to the boundaryvalue problem

$$
\varepsilon y^{\prime \prime}-\frac{1}{1+2 x} y^{\prime}+y=0, \quad \varepsilon \ll 1, \quad y(0)=1, \quad y(1)=0
$$

As always, remember to check and explain the location of any boundary layer(s).
6. [9 points] Short answer questions.
(a) Sketch a bifurcation diagram, with respect to the parameter h, for the autonomous ODE $u^{\prime}=$ $u^{2}-h$. Label your axes, and which parts are stable or unstable.
(b) Write a little-o relation stating that $\log \varepsilon$ blows up more weakly than any negative power of ε, as $\varepsilon \rightarrow 0^{+}$, then prove it.
(c) Is $f(\lambda, t)=1 / t^{\lambda}$ pointwise, and/or uniformly, convergent to zero on the interval $t \in(1, \infty)$, as $\lambda \rightarrow+\infty$? (briefly explain)

Useful formulae:
non-oscillatory WKB approximation

$$
y=\frac{1}{\sqrt{k(x)}} e^{ \pm \frac{1}{\varepsilon} \int k(x) d x}
$$

Binomial

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\cdots
$$

Error function [note $\operatorname{erf}(0)=0$ and $\left.\lim _{z \rightarrow \infty} \operatorname{erf}(z)=1\right]$:

$$
\operatorname{erf}(z):=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-s^{2}} d s
$$

Euler relations

$$
e^{i \theta}=\cos \theta+i \sin \theta, \quad \cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}, \quad \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}
$$

Power-reduction identities

$$
\begin{aligned}
\cos ^{3} \theta & =\frac{1}{4}(3 \cos \theta+\cos 3 \theta) \\
\cos ^{2} \theta \sin \theta & =\frac{1}{4}(\sin \theta+\sin 3 \theta) \\
\cos \theta \sin ^{2} \theta & =\frac{1}{4}(\cos \theta-\cos 3 \theta) \\
\sin ^{3} \theta & =\frac{1}{4}(3 \sin \theta-\sin 3 \theta)
\end{aligned}
$$

