Math 46, Applied Math (Spring 2011): Final

3 hours, 80 points total, 10 questions (worth between 5 and 9 points each). Good luck!

1. [9 points] Consider the Dirichlet eigenvalue problem for $y(x)$ in the interval $x \in(1, e)$,

$$
-x^{2} y^{\prime \prime}=\lambda y, \quad y(1)=y(e)=0
$$

(a) Prove that any eigenvalues λ have a definite sign (which?)
(b) Find WKB approximations to the nth eigenvalue λ_{n} and corresponding eigenfunction $y_{n}(x)$.
(c) Sketch an eigenfunction of very large eigenvalue magnitude, showing how frequency and amplitude change vs x.
[BONUS] In this particular problem, what are the accuracies of λ_{n} and $y_{n}(x)$?
2. [6 points] The radius r of the early phase of a nuclear fireball explosion is assumed to depend only on time t, the total energy released e (units $M L^{2} T^{-2}$), and the density of the surrounding gas ρ. Following G. I. Taylor in the 1940's, fill a dimensions matrix, and deduce the most specific formula you can for how the radius depends on the other variables.
3. [9 points] Consider the perturbed initial-value problem for $y(t)$ on $t>0$,

$$
y^{\prime \prime}+y+4 \varepsilon y y^{\prime 2}=0, \quad 0<\varepsilon \ll 1, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

(a) Use the Poincaré-Lindstedt method to give a 2-term approximation. [Hint: rescale $\tau=\omega t$ where ω is perturbed from the value 1 . Don't forget to match initial conditions. Partial credit if you can only do regular perturbation; doing that will jog your memory anyway...]
(b) Discuss briefly any differences in the uniformity of the approximation, and the reason, if regular perturbation theory were used instead.
4. [5 points] By converting into an ODE, find the unique solution $u(t)$ to the integral equation,

$$
4 \int_{0}^{t}(t-s) u(s) d s+u(t)=t, \quad t>0
$$

5. [9 points] Fourier \& convolution stuff.
(a) Consider the 'step' function $H(x)=1$ for $x>0$, zero otherwise. Compute the convolution of H with itself.
(b) Find the Fourier transform of the function $u(x)=x e^{-x^{2} / 2}$. [Hint: it's a derivative]
(c) Recall that in class you showed that the 'top hat' function $u(x)=1$ for $0<x<1$ and zero otherwise, when convolved with itself, gives the continuous 'triangle hat' function,

$$
T(x)= \begin{cases}x, & 0<x<1 \\ 2-x, & 1<x<2 \\ 0, & \text { otherwise }\end{cases}
$$

Find the Fourier transform of the function T.
6. [8 points] Consider the reaction-diffusion equation in $\Omega \subset \mathbb{R}^{3}$ with zero-flux boundary condition,

$$
u_{t}=\Delta u-\alpha u, \quad \text { in } \Omega, \quad t>0, \quad \frac{\partial u}{\partial n}=0 \quad \text { on } \partial \Omega, \quad u(\mathbf{x}, 0)=f(\mathbf{x}), \quad \mathbf{x} \in \Omega
$$

where $\alpha(\mathbf{x})$ is a given spatially-dependent decay rate, and f a given initial distribution.
(a) Consider the simple case $\alpha(\mathbf{x})=0$. Prove that there is at most one solution.
(b) Adapt your proof to general $\alpha(\mathbf{x})$. What condition on $\alpha(\mathbf{x})$ enables your uniqueness proof to still work?
7. [9 points] K is a symmetric Fredholm integral operator acting on the domain $(0, \pi)$, with a complete set of eigenfunctions $\{\sin n x\}$ and eigenvalues $1 / n^{2}$, labeled by $n=1,2, \ldots$..
(a) Find the general solution u to the equation $(K u)(x)-u(x)=\sin x, \quad 0<x<\pi$, or explain why it has no solution:
(b) Find the general solution u to the equation $(K u)(x)-u(x)=\sin 2 x, \quad 0<x<\pi$, or explain why it has no solution:
(c) Find the general solution u to the equation $(K u)(x)=\left\{\begin{array}{ll}1, & 0<x \leq \pi / 2 \\ 0, & \pi / 2<x<\pi\end{array}\right.$, or explain why it has no solution:
[BONUS] Explain whether the solution u to part (c) is in $L^{2}[(0, \pi)]$:
8. [8 points] Electric potential u in an upper half-plane $x \in \mathbb{R}, y>0$, filled with anisotropic medium, satisfies a PDE with a decay condition at infinity,

$$
a^{2} u_{x x}+u_{y y}=0, \quad u(x, 0)=f(x), x \in \mathbb{R}, \quad u(x, y) \text { bounded as } y \rightarrow+\infty
$$

with $a>0$ a given anisotropy constant, and f a given boundary voltage function.
(a) Is the PDE hyperbolic, parabolic, or elliptic?
(b) Use the Fourier transform method to derive the (unique) solution $u(x, y)$. Your answer should be in terms of a and f only. (Don't forget to explain where the $y \rightarrow+\infty$ condition enters.)
9. [8 points] Consider the Sturm-Liouville problem $-u^{\prime \prime}=f(x)$ on the interval $0<x<1$, with mixed boundary conditions $\alpha u(0)+u^{\prime}(0)=0$, and $u(1)=0$. Here α is some (Robin) constant.
(a) For fixed $\alpha \neq 1$, compute the Green's function for this SLP.
(b) Discuss as concretely as you can the solvability for general f, in the case when $\alpha=1$.
10. [9 points] Short questions.
(a) Compute the outer solution (with its correct constant) for the perturbed BVP $\varepsilon y^{\prime \prime}+(x-2) y^{\prime}+y=0, y(0)=1, y(1)=0$, with $0<\varepsilon \ll 1$.
(b) Is the sequence $f_{n}(x)=e^{-n x^{2}}, n=1,2, \ldots$, convergent to the zero function on $(-1,1)$ pointwise? uniformly? in L^{2} ?
(c) Is $10^{9}\left(e^{x}-1-x\right)=O\left(x^{2}\right)$ as $x \rightarrow 0$? Prove your answer.
(d) [BONUS] Recall that if K is any symmetric operator with a complete set of eigenfunctions, the kernel of K^{-1} may be written as an eigenfunction expansion. Derive instead an eigenfunction expansion for the kernel of K itself:

Useful formulae

Non-oscillatory WKB approximation

$$
y=\frac{1}{\sqrt{k(x)}} e^{ \pm \frac{1}{\varepsilon} \int k(x) d x}
$$

Binomial

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\cdots
$$

Error function $\left[\right.$ note $\operatorname{erf}(0)=0$ and $\left.\lim _{z \rightarrow \infty} \operatorname{erf}(z)=1\right]$:

$$
\operatorname{erf}(z):=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-s^{2}} d s
$$

Euler relations

$$
e^{i \theta}=\cos \theta+i \sin \theta, \quad \cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}, \quad \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}
$$

Power-reduction identities

$$
\begin{aligned}
\cos ^{3} \theta & =\frac{1}{4}(3 \cos \theta+\cos 3 \theta) \\
\cos ^{2} \theta \sin \theta & =\frac{1}{4}(\sin \theta+\sin 3 \theta) \\
\cos \theta \sin ^{2} \theta & =\frac{1}{4}(\cos \theta-\cos 3 \theta) \\
\sin ^{3} \theta & =\frac{1}{4}(3 \sin \theta-\sin 3 \theta)
\end{aligned}
$$

Leibniz's formula

$$
\frac{d}{d x} \int_{a(x)}^{b(x)} f(x, t) d t=\int_{a(x)}^{b(x)} \frac{d f}{d x}(x, t) d t-a^{\prime}(x) f(x, a(x))+b^{\prime}(x) f(x, b(x))
$$

Fourier Transforms: $\quad \hat{u}(\xi)=\int_{-\infty}^{\infty} e^{i \xi x} u(x) d x$

$$
u(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i \xi x} \hat{u}(\xi) d \xi
$$

$u(x)$	$\hat{u}(\xi)$
$\delta(x-a)$	$e^{i a \xi}$
$e^{i k x}$	$2 \pi \delta(k+\xi)$
$e^{-a x^{2}}$	$\sqrt{\frac{\pi}{a}} e^{-\xi^{2} / 4 a}$
$e^{-a\|x\|}$	$\frac{2 a}{a^{2}+\xi^{2}}$
$H(a-\|x\|)$	$2 \frac{\sin (a \xi)}{\xi}$
$u^{(n)}(x)$	$(-i \xi)^{n} \hat{u}(\xi)$
$u * v$	$\hat{u}(\xi) \hat{v}(\xi)$

Here $H(x)=1$ for $x \geq 0$, zero otherwise.

Greens first identity: $\quad \int_{\Omega} u \Delta v+\nabla u \cdot \nabla v d \mathbf{x}=\int_{\partial \Omega} u \frac{\partial v}{\partial n} d A$
Product rule for divergence: $\quad \nabla \cdot(u \mathbf{J})=u \nabla \cdot \mathbf{J}+\mathbf{J} \cdot \nabla u$

