Math 46, Applied Math (Spring 2009): Midterm 2

2 hours, 50 points total, 7 questions, varying numbers of points (also indicated by space)

1. [5 points] Find a 2-term asymptotic expansion for $I(\lambda)=\int_{\lambda}^{\infty} t^{2} e^{-t^{2}} d t$ in the large positive parameter $\lambda \rightarrow \infty$.
2. [7 points]
(a) Write the first 3 terms (i.e. trivial term plus two more) in the Neumann series for the solution of $u(t)=t+\lambda(K u)(t)$, where K is a Volterra operator with kernel $k(t, s)=s t$ and $\lambda \in \mathbb{R}$ some constant.
(b) Use the fact that this series is always uniformly convergent on any bounded interval to prove that K (acting on any bounded interval) has no eigenvalues.
3. [6 points] Use an energy argument to show that the eigenvalues of the following Neumann boundary condition problem have definite sign (which?):

$$
\begin{aligned}
\left((1+x) u^{\prime}\right)^{\prime} & =\lambda u \quad \text { for } 0<x<1 \\
u^{\prime}(0) & =u^{\prime}(1)=0
\end{aligned}
$$

Is $\lambda=0$ an eigenvalue? If so, what is its eigenspace?
4. [10 points] Consider the integral operator $K u(x):=\int_{0}^{\pi} x \sin y u(y) d y$ acting on functions on $(0, \pi)$.
(a) What are all eigenvalue(s) (with multiplicity) and eigenspace(s) of this operator?
(b) Give the general solution to $K u(x)-2 \pi u(x)=\sin x$, or explain why not possible.
(c) Give the general solution to $K u(x)-\pi u(x)=\sin 2 x$, or explain why not possible.
(d) Give the general solution to $K u(x)=\sin x$, or explain why not possible.
5. [6 points] Consider the integral operator $K u(x)=\int_{1}^{e} k(x, y) u(y) d y$ with kernel

$$
k(x, y)= \begin{cases}1-\ln y, & x<y \\ 1-\ln x, & x>y\end{cases}
$$

Convert the eigenvalue problem $K u=\lambda u$ into a Sturm-Liouville problem on the interval ($1, e$). Don't forget to find homogeneous boundary conditions [Hint: one will be Dirichlet, one Neumann]
6. [8 points] Short-answer questions
(a) Is the sequence of function $\left\{x, x^{2}, x^{3}, \ldots\right\}$ convergent to 0 in the L^{2} sense on the interval $[0,1]$? (prove via a quick calculation)
(b) A symmetric Fredholm integral operator K on (a, b) has eigenvalues $1 / n^{2}$ and normalized eigenfunctions $\phi_{n}, n=1,2, \ldots$ What condition on f makes the equation $K u-\frac{1}{4} u=f$ soluble, and what then is the general solution?
(c) On the interval $(0, \pi)$, the functions $\phi_{n}(x)=\sin n x$ for $n=1,2, \ldots$ form an orthogonal set. If $f=\sum_{n=1}^{\infty} f_{n} \phi_{n}$ then use the Cauchy-Schwarz inequality to bound f_{1} in terms of $\|f\|$. (BONUS: Show that this either stronger or weaker than Bessel's inequality)
(d) [BONUS] Answer question a) for two other forms of convergence on the same interval
7. [8 points] Now some fun new territory! Consider the inhomogenous SLP

$$
-u^{\prime \prime}=f
$$

where f is some given driving function on $[0,1]$, with boundary conditions $u(0)=u(1)=0$ [Hint: apply them wherever possible below]
(a) Attack the SLP as you would to convert an IVP into a Volterra integral equation, i.e. integrate from 0 to x, twice, and convert any iterated integrals into single ones. Write your result as $u(x)=$ something involving f and the unknown value $u^{\prime}(0)$.
(b) Now find an expression for $u^{\prime}(0)$ purely in terms of f, as follows: Multiply both sides of the original ODE by $(x-1)$ then integrate from 0 to 1 .
(c) Substitute your expression for $u^{\prime}(0)$ into part a) to get an explicit solution formula for $u(x)$. FUN BONUS: Show that this is actually equivalent to the familiar Greens function solution (from worksheet) to this SLP!

Useful formulae:
non-oscillatory WKB approximation

$$
y=\frac{1}{\sqrt{k(x)}} e^{ \pm \frac{1}{\varepsilon} \int k(x) d x}
$$

Binomial

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\cdots
$$

Error function [note $\operatorname{erf}(0)=0$ and $\lim _{z \rightarrow \infty} \operatorname{erf}(z)=1$]:

$$
\operatorname{erf}(z):=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-s^{2}} d s
$$

Euler relations

$$
e^{i \theta}=\cos \theta+i \sin \theta, \quad \cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}, \quad \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}
$$

Power-reduction identities

$$
\begin{aligned}
\cos ^{3} \theta & =\frac{1}{4}(3 \cos \theta+\cos 3 \theta) \\
\cos ^{2} \theta \sin \theta & =\frac{1}{4}(\sin \theta+\sin 3 \theta) \\
\cos \theta \sin ^{2} \theta & =\frac{1}{4}(\cos \theta-\cos 3 \theta) \\
\sin ^{3} \theta & =\frac{1}{4}(3 \sin \theta-\sin 3 \theta)
\end{aligned}
$$

Leibniz's formula

$$
\frac{d}{d x} \int_{a(x)}^{b(x)} f(x, t) d t=\int_{a(x)}^{b(x)} \frac{d f}{d x}(x, t) d t-a^{\prime}(x) f(x, a(x))+b^{\prime}(x) f(x, b(x))
$$

