Math 46, Applied Math (Spring 2009): Midterm 1

2 hours, 50 points total, 6 questions worth varying number of points

1. [9 points] A gas bubble of mean radius R, containing gas at mean pressure P, in a surrounding fluid of density ρ, can oscillate at frequency ω. This is actually useful in enhancing ultrasound reflection in medical imaging. [Hint: pressure is force per unit area; force is mass times acceleration]
(a) How many (independent) dimensionless quantities are there? Give them. [Hint: a dimensions matrix will help].
(b) If a physical law relates the four parameters given in the problem, how must ω scale with R when the other two parameters are fixed?
(c) If instead a physical law relates the above four to a fifth parameter v, the velocity of the bubble moving through the fluid, use the Buckingham Pi Theorem to deduce whether the scaling between ω and R you found above must still hold when the other three parameters are fixed. (Explain)
2. [7 points] Consider the algebraic equation

$$
\varepsilon x^{3}+x+1=0
$$

(a) Find leading-order approximations to all solutions valid for small $\varepsilon \ll 1$
(b) Find a 2-term approximation to the root which is finite as $\varepsilon \rightarrow 0$
(c) [BONUS] Answer again (a) above if the equation is changed to $\varepsilon^{2} x^{4}+\varepsilon x^{3}+x+1=0$
3. [9 points] Use singular perturbation methods to find a uniform approximate solution to the boundaryvalue problem

$$
\varepsilon y^{\prime \prime}-2 y^{\prime}-e^{y}=0, \quad \varepsilon \ll 1, \quad y(0)=0, \quad y(1)=0
$$

As always, remember to check and explain the location of any boundary layer(s). [Hint: if you can't solve an ODE, express things in terms of its limiting value(s)]
4. [10 points] Short answer questions.
(a) Find a WKB approximation to the nth eigenvalue of $\varepsilon^{2} y^{\prime \prime}+(1+x)^{2} y=0$ with $y(0)=y(1)=0$ for large n.
(b) Sketch a bifurcation diagram showing equilibria and stability for the ODE $d u / d t=u^{2}-h^{2}$, as the parameter h varies.
(c) Prove or disprove the following claim: $\frac{1}{\log \varepsilon}=o(\varepsilon)$ as $\varepsilon \rightarrow 0^{+}$
(d) Is $f(t, \varepsilon)=\sin (\varepsilon t)$ pointwise, and/or uniformly, convergent to zero on the interval $t \in(0,+\infty)$, as $\varepsilon \rightarrow 0$? (briefly explain)
(e) [BONUS] Is it possible for a function $f(t, \varepsilon)$ to be uniformly convergent on some interval of t, but not pointwise convergent, as $\varepsilon \rightarrow 0$? (Give an example or explain.)
5. [9 points] Consider the perturbed initial-value problem for $y(t)$ on $t>0$,

$$
y^{\prime \prime}+y=4 \varepsilon y\left(1-y^{\prime 2}\right), \quad 0<\varepsilon \ll 1, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

(a) Use the Poincaré-Lindstedt method to give a 2-term uniform approximation. [Hint: set $\tau=\omega t$ where ω is perturbed from the value 1. Don't forget to match initial conditions.]
(b) Has switching on the perturbation increased or decreased the period of the oscillator?
6. [6 points] Radioactivity is modeled by quantum particles leaking through a barrier according to the Schrödinger equation

$$
y^{\prime \prime}-\frac{\lambda}{x^{3 / 2}} y=0, \quad \text { for } x>1
$$

where $\lambda \gg 1$ is a large positive parameter.
(a) Is the ODE oscillatory or growing/decaying?
(b) Write down a WKB approximation to the general solution
(c) Find a WKB approximation to y in the barrier region $x>1$, if the initial value is $y(1)=1$, and a condition $\lim _{x \rightarrow+\infty} y(x)=0$ is imposed.

Useful formulae:
non-oscillatory WKB approximation

$$
y=\frac{1}{\sqrt{k(x)}} e^{ \pm \frac{1}{\varepsilon} \int k(x) d x}
$$

Binomial

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\cdots
$$

Error function [note $\operatorname{erf}(0)=0$ and $\lim _{z \rightarrow \infty} \operatorname{erf}(z)=1$]:

$$
\operatorname{erf}(z):=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-s^{2}} d s
$$

Euler relations

$$
e^{i \theta}=\cos \theta+i \sin \theta, \quad \cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}, \quad \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}
$$

Power-reduction identities

$$
\begin{aligned}
\cos ^{3} \theta & =\frac{1}{4}(3 \cos \theta+\cos 3 \theta) \\
\cos ^{2} \theta \sin \theta & =\frac{1}{4}(\sin \theta+\sin 3 \theta) \\
\cos \theta \sin ^{2} \theta & =\frac{1}{4}(\cos \theta-\cos 3 \theta) \\
\sin ^{3} \theta & =\frac{1}{4}(3 \sin \theta-\sin 3 \theta)
\end{aligned}
$$

