
Math 46, Applied Math (Spring 2009): Final

3 hours, 80 points total, 9 questions worth varying numbers of points

1. [8 points] Find an approximate solution to the following initial-value problem which is uniformly valid
on t > 0 as ε → 0, where 0 < ε ≪ 1 is a perturbation parameter.

εy′′ + 2ty′ + ty = 0, y(0) = 2,
√

εy′(0) = 1

(Be sure to present your answer purely in terms of the variables in the problem, and in a form without
any integrals)
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2. [9 points] Consider the Dirichlet eigenvalue problem on 0 < x < π,

y′′ = λ(1 + sinx)2y, y(0) = y(π) = 0

(a) Prove that eigenvalues have a definite sign (which?)

(b) Find WKB approximations to the nth eigenvalue and corresponding eigenfunction.

(c) Sketch an eigenfunction with very large eigenvalue magnitude, showing how frequency and am-
plitude change vs x.
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3. [9 points] Spread of pollutant concentration u(x, t) in an initially clean body of water Ω ⊂ R
3 obeys

ut − ∆u = f(x), x ∈ Ω, t > 0, αu +
∂u

∂n
= 0 on ∂Ω, u(x, 0) = 0, x ∈ Ω

where f is the pollution source term, and α > 0 a boundary absorption constant.

(a) Prove that a steady-state (time-independent) solution u(x) to the PDE with given boundary
conditions is unique. [Hint: set the t-derivative to zero]

(b) Prove that the time-dependent solution to the full equations above is unique
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(c) The homogeneous steady-state case of the above is called a Stekloff eigenvalue problem with α as
the eigenvalue:

∆u = 0 in Ω, αu +
∂u

∂n
= 0 on ∂Ω.

Prove that eigenfunctions from different eigenspaces are orthogonal on the boundary. [BONUS:
prove α has a definite sign]

4. [7 points] In 1940 the Russian applied mathematician A. Kolmogorov assumed there was a law for
turbulent fluid flow relating the four quantities: l (length), E (energy, units of ML2T−2), ρ (density,
mass per unit volume), and R (dissipation rate, energy per unit time per unit volume). Using this
assumption and the Buckingham Pi Theorem, state the simple form the law must have. Show that
there is a (famous!) scaling relation E = const · lα when other parameters are held constant; give α.
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5. [9 points] Bacterial evolution for times t > 0 can be modelled by the 1D reaction-diffusion equation in
x ∈ R,

ut = uxx + αu, u(x, 0) = f(x)

where α is a breeding/death rate constant.

(a) Use the Fourier transform method to write a general solution u(x, t) for t > 0 in terms of the
initial condition f and α.

(b) Fix α > 0, i.e. positive breeding. What range of spatial frequencies ξ in the initial condition lead
to exponential growth vs t (unstable as opposed to stable behavior)?
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6. [7 points] Solve the following integral equation by converting to an ODE then solving (don’t forget the
boundary/initial conditions):

u(t) +

∫ t

0

(t − s)u(s)ds = t2, t > 0

Must this solution be unique on each interval 0 < t < T ? If not, characterize the non-uniqueness, or,
if so, explain what theorem proves your claim.
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7. [10 points] Consider the Sturm-Liouville operator Au := −u′′ − 1
4u on [0, π] with Neumann boundary

conditions u′(0) = u′(π) = 0.

(a) Find the set of eigenfunctions and corresponding eigenvalues of A. (If you label by n, be sure to
state whether counting starts at n = 0 or n = 1, etc)

(b) Does the equation Au = f with the above boundary conditions have a Green’s function? If so,
find an expression for it; if not, explain in detail why not.

(c) Use the Green’s function, or if not possible, another ODE solution method, to write an explicit
formula for the solution u(x) to Au = f with the above boundary conditions, in terms of a general
driving f(x).
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(d) [BONUS] What is the spectrum of the Green’s operator Gu(x) =
∫ π

0
g(x, ξ)u(ξ)dξ, or the solution

operator you used above?

8. [7 points] Use the conservation law approach to derive the heat equation on the surface of the unit
sphere for temperature distributions u(θ, t) which depend only on polar angle 0 < θ < π as shown (and
not on longitude), and on time t. As usual you may use Fick’s Law that flux is −k times the gradient
of u. [Hint: remember you are working on a surface not in a volume. The diagram shows that the
radius of the circle at polar angle θ is sin θ.]

θ=0
θ

[BONUS: find the general form of a solution to Laplace’s equation on this sphere with the above
symmetry]
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9. [14 points] Short-answer questions

(a) Give an example of an interval and an infinite sequence of functions which are orthogonal on this
interval but not complete.

(b) The variance of a probability distribution function p(x) is defined as
∫ ∞

−∞ x2p(x)dx. Find a
formula for the variance as a certain derivative of the Fourier transform of p evaluated at a
certain frequency.

(c) Let K be a self-adjoint operator with a complete set of orthogonal eigenfunctions. Prove that
Ku−λu = f can only be solvable if f is orthogonal to all solutions v of the homogeneous problem
Kv − λv = 0.
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(d) As λ → +∞, is e−λ = O(λ−n) for each n = 0, 1, . . . ? (Prove your answer)

(e) Place the following four terms in the correct order to form an asymptotic series as ε → 0:

f(ε) ∼ ε5/2 + ε2 + ε−2 + ε2 ln ε + . . .

(f) A 2π-periodic 1D image f is blurred by a symmetric convolution kernel to give g. Explain when
and why it is sometimes impossible to reconstruct f from g.

[BONUS: Also explain the effect of the smoothness (differentiability) of this kernel on the ability
to reconstruct f from a noisy measured data g]
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Useful formulae

Non-oscillatory WKB approximation

y =
1

√

k(x)
e±

1

ε

R

k(x)dx

Binomial

(1 + x)n = 1 + nx +
n(n − 1)

2!
x2 +

n(n − 1)(n − 2)

3!
x3 + · · ·

Error function [note erf(0) = 0 and limz→∞erf(z) = 1]:

erf(z) :=
2√
π

∫ z

0

e−s2

ds

Euler relations

eiθ = cos θ + i sin θ, cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i

Power-reduction identities

cos3 θ =
1

4
(3 cos θ + cos 3θ)

cos2 θ sin θ =
1

4
(sin θ + sin 3θ)

cos θ sin2 θ =
1

4
(cos θ − cos 3θ)

sin3 θ =
1

4
(3 sin θ − sin 3θ)

Leibniz’s formula

d

dx

∫ b(x)

a(x)

f(x, t)dt =

∫ b(x)

a(x)

df

dx
(x, t)dt − a′(x)f(x, a(x)) + b′(x)f(x, b(x))

Fourier Transforms: û(ξ) =
∫ ∞

−∞
eiξxu(x)dx

u(x) = 1
2π

∫ ∞

−∞
e−iξxû(ξ)dξ

u(x) û(ξ)

δ(x − a) eiaξ

eikx 2πδ(k + ξ)

e−ax2 √

π
a e−ξ2/4a

e−a|x| 2a
a2+ξ2

H(a − |x|) 2 sin(aξ)
ξ

u(n)(x) (−iξ)nû(ξ)
u ∗ v û(ξ)v̂(ξ)

Here H(x) = 1 for x ≥ 0, zero otherwise.

Greens first identity:
∫

Ω
u∆v + ∇u · ∇v dx =

∫

∂Ω
u ∂v

∂ndA

Product rule for divergence: ∇ · (uJ) = u∇ · J + J · ∇u
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