Math 46, Applied Math (Spring 2008): Midterm 2

2 hours, 50 points total, 6 questions, varying numbers of points (also indicated by space)

1. [5 points]

Find a 2-term asymptotic expansion for $I(\lambda)=\int_{\lambda}^{\infty} \frac{e^{-t^{2}}}{t} d t$ in the large positive parameter $\lambda \rightarrow \infty$.
2. [8 points]
(a) Write out the first 3 terms (that includes the 'trivial' term) of the Neumann series for the solution to

$$
u(t)-\lambda \int_{0}^{t} e^{t-s} u(s) d s=e^{-2 t}
$$

where $\lambda \in \mathbb{R}$ is some constant.
(b) For what values of λ does the full series converge to a unique solution?
3. [10 points] Consider the Sturm-Liouville operator $A u:=-u^{\prime \prime}-\frac{1}{4} u$ on $[0, \pi]$ with Neumann boundary conditions $u^{\prime}(0)=u^{\prime}(\pi)=0$.
(a) Find the set of eigenfunctions and corresponding eigenvalues of A.
(b) Does the equation $A u=f$ with the above boundary conditions have a Green's function? If so, find an expression for it; if not, explain in detail why not.
(c) Use the Green's function, or if not possible, another ODE solution method, to write an explicit formula for the solution $u(x)$ to $A u=f$ with the above boundary conditions, in terms of a general driving $f(x)$.
(d) [BONUS] What is the spectrum of the Green's operator $G u(x)=\int_{0}^{\pi} g(x, \xi) u(\xi) d \xi$, or the solution operator you used above?
4. [8 points] Consider the set of two functions $\{1, x\}$ on the interval $x \in[0,1]$.
(a) Replace the second function by another one in $\operatorname{Span}\{1, x\}$ which turns the pair into an orthogonal set.
(b) Find the best approximation (in the mean-square or L^{2} sense) to the function $\ln x$ on $(0,1)$ using this orthogonal set. Don't bother to evaluate integrals; just write expressions for the coefficients. (Note that the function is unbounded but still in $L^{2}(0,1)$.)
5. [9 points] Consider the integral operator $K u(x):=\int_{0}^{1} x^{3} y u(y) d y$
(a) What are the eigenvalue(s) (with multiplicity) and eigenfunction(s) of this operator?
(b) Give the general solution to $K u(x)-\frac{1}{10} u(x)=x$, or explain why not possible.
(c) Give the general solution to $K u(x)-\frac{1}{5} u(x)=x$, or explain why not possible.
(d) [BONUS]: Give the general solution to $K u(x)=2 x^{3}$, or explain why not possible.
6. [10 points]
(a) By converting to a Sturm-Liouville problem, find the eigenvalues and eigenfunctions of the operator $K u(x):=\int_{0}^{1} k(x, y) u(y) d y$ with kernel

$$
k(x, y)= \begin{cases}x, & x<y \\ y, & x>y\end{cases}
$$

[Hint: you'll need boundary conditions; look for both Dirichlet and Neumann type]
(b) If possible, solve $K u(x)=\sin (\pi x / 2)$.
(c) Discuss limitations on reconstructing $u(x)$ from measured data $f(x)=K u(x)$ which has been polluted by noise (say 0.01) in each of the eigenfunction coefficients.
(d) [BONUS] Solve b) using a different method from the one you used, i.e. if you did use the eigenbasis, don't, and visa versa.

Useful formulae:
non-oscillatory WKB approximation

$$
y=\frac{1}{\sqrt{k(x)}} e^{ \pm \frac{1}{\varepsilon} \int k(x) d x}
$$

Binomial

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\cdots
$$

Error function [note $\operatorname{erf}(0)=0$ and $\left.\lim _{z \rightarrow \infty} \operatorname{erf}(z)=1\right]$:

$$
\operatorname{erf}(z):=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-s^{2}} d s
$$

Euler relations

$$
e^{i \theta}=\cos \theta+i \sin \theta, \quad \cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}, \quad \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}
$$

Power-reduction identities

$$
\begin{aligned}
\cos ^{3} \theta & =\frac{1}{4}(3 \cos \theta+\cos 3 \theta) \\
\cos ^{2} \theta \sin \theta & =\frac{1}{4}(\sin \theta+\sin 3 \theta) \\
\cos \theta \sin ^{2} \theta & =\frac{1}{4}(\cos \theta-\cos 3 \theta) \\
\sin ^{3} \theta & =\frac{1}{4}(3 \sin \theta-\sin 3 \theta)
\end{aligned}
$$

Leibniz's formula

$$
\frac{d}{d x} \int_{a(x)}^{b(x)} f(x, t) d t=\int_{a(x)}^{b(x)} \frac{d f}{d x}(x, t) d t-a^{\prime}(x) f(x, a(x))+b^{\prime}(x) f(x, b(x))
$$

