Math 46, Applied Math (Spring 2008): Final

3 hours, 80 points total, 9 questions, roughly in syllabus order (apart from short answers)

1. [16 points. Note part c, worth 7 points, is independent of the others]

A nonlinear damped oscillator is given by the initial-value problem

$$
m y^{\prime \prime}+a y^{\prime}+k y^{3}=0 \quad y(0)=0 \quad m y^{\prime}(0)=I
$$

(a) If m is a mass, find the dimensions of the other three parameters a, k, I (recall y is a displacement, i.e. length).
(b) Write down two length scales and two time scales.
(c) Show that when the model is non-dimensionalized using scaling appropriate for the small mass limit (choose time and length scales which don't involve m), the IVP

$$
\varepsilon y^{\prime \prime}+y^{\prime}+y^{3}=0 \quad y(0)=0 \quad \varepsilon y^{\prime}(0)=1
$$

results. What is ε in terms of the original parameters?
(d) Find a leading-order perturbation approximation to the solution of the IVP from (b), and give a crude sketch showing any key features. Here it is written out again:

$$
\varepsilon y^{\prime \prime}+y^{\prime}+y^{3}=0 \quad y(0)=0 \quad \varepsilon y^{\prime}(0)=1 \quad \varepsilon \ll 1
$$

Don't forget to sketch; you can do intuitively even without solving (1 point):
2. [6 points] Formulate the IVP

$$
u^{\prime \prime}+u^{\prime}+t u=1, \quad u(0)=2, \quad u^{\prime}(0)=1
$$

as a Volterra integral equation of the form $K u-\lambda u=f$ (do not try to solve).
3. [8 points] K is a symmetric Fredholm operator on $[0, \pi]$ with continuous kernel, a complete set of (unnormalized) eigenfunctions $\{\sin n x\}$ labeled by $n=1,2, \ldots$, with corresponding eigenvalues $1 / n^{2}$.
(a) Use this to find the general solution to $K u(x)-2 u(x)=\sin 2 x$, or explain why not possible.
(b) Find the general solution to $K u(x)-\frac{1}{4} u(x)=\sin 2 x$, or explain why not possible.
(c) Find the general solution to $K u(x)-\frac{1}{4} u(x)=1$, or explain why not possible.
4. [9 points] The following PDE describes a chemical with concentration $u(\mathbf{x}, t)$ diffusing while being broken down by the environment at given rate $\alpha(\mathbf{x}) \geq 0$. Prove that any solution to the IVP is unique.

$$
u_{t}=\Delta u-\alpha u \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega, \quad u(\mathbf{x}, 0)=f(\mathbf{x}) \quad \text { in } \Omega
$$

An extra drift term is added to the right-hand side of the PDE giving $u_{t}=\Delta u-\mathbf{c} \cdot \nabla u-\alpha u$. Find a condition on the drift velocity field $\mathbf{c}(\mathbf{x})$ such that your above proof method still works.
5. [5 points] Compute directly the convolution $(u * v)(x)$ of the following two functions on \mathbb{R} :

$$
\begin{aligned}
& u(x)=\left\{\begin{array}{ll}
1, & x \geq 0 \\
0, & x<0
\end{array} \quad \text { (this is the unit step function) },\right. \\
& v(x)=\left\{\begin{array}{ll}
1, & 0 \leq x \leq 1 \\
0, & \text { otherwise }
\end{array} \quad\right. \text { (this is a top-hat function). }
\end{aligned}
$$

6. [7 points] Use Fourier transforms to compute the convolution of the Cauchy distribution function

$$
u(x)=\frac{1}{1+x^{2}}
$$

with itself.
[BONUS: describe precisely the linear transformation required to take the original Cauchy function to your above answer, and interpret].
7. [9 points] Use Fourier transforms to solve the 1D wave equation $u_{t t}=u_{x x}$ for $x \in \mathbb{R}, t>0$, with initial conditions $u(x, 0)=0$, and $u_{t}(x, 0)=f(x)$ for a general function f. Try to give an answer involving a real-space integral. [Hint: after you use the ICs, combine things to make a trig function]
[BONUS: describe in words the action that propagation in time has upon the initial function, and make a connection to image processing].
8. [10 points] Short answers.
(a) Is the PDE $u_{x x}+u_{y y}=4 u_{x y}$ parabolic, hyperbolic or elliptic?
(b) Find the general solution to the $\operatorname{PDE} u_{x y}=1$ for $x, y \in \mathbb{R}$.
(c) The speed c of sound in a gas depends only on density ρ and pressure P (dimensions $M L^{-1} T^{-2}$). Deduce as much as you can about their relationship.
(d) Use the Cauchy-Schwarz inequality to give an upper bound to the number $\int_{0}^{1} y^{2} f(y) d y$ in terms of $\|f\|$ on the interval $(0,1)$.
(e) [BONUS] The 2-norm of an operator is defined as $\max _{f \neq 0}\|K f\| /\|f\|$. Compute the 2-norm of the Fredholm operator with kernel $x y$ on the interval $[0,1]$.
9. [10 points] More short answers!
(a) Sketch a bifurcation diagram, including stability, for the autonomous ODE $u^{\prime}=u^{2}-h$.
(b) In the limit $n \rightarrow+\infty$ does the top-hat sequence $f_{n}(x)=n^{-1 / 2}$ for $x<n$, zero otherwise, converge to the zero function on $[0, \infty)$ pointwise? uniformly? in L^{2} sense? (three binary answers required)
(c) Define completeness for a set of functions $\left\{\phi_{j}\right\}_{j=1,2, \ldots}$ on an interval $[a, b]$.
(d) The auto-correlation of a (complex-valued) function $u(x)$ is defined as $C(x)=\int_{-\infty}^{\infty} \overline{u(y-x)} u(y) d y$ (note there is no typo, and bar means complex conjugate), and is useful in signal processing. Find its Fourier transform $\hat{C}(\xi)$ in terms of $\hat{u}(\xi)$. (This is called the Wiener-Khintchine theorem).

Useful formulae

Non-oscillatory WKB approximation

$$
y=\frac{1}{\sqrt{k(x)}} e^{ \pm \frac{1}{\varepsilon} \int k(x) d x}
$$

Binomial

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\cdots
$$

Error function $\left[\right.$ note $\operatorname{erf}(0)=0$ and $\left.\lim _{z \rightarrow \infty} \operatorname{erf}(z)=1\right]$:

$$
\operatorname{erf}(z):=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-s^{2}} d s
$$

Euler relations

$$
e^{i \theta}=\cos \theta+i \sin \theta, \quad \cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}, \quad \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}
$$

Power-reduction identities

$$
\begin{aligned}
\cos ^{3} \theta & =\frac{1}{4}(3 \cos \theta+\cos 3 \theta) \\
\cos ^{2} \theta \sin \theta & =\frac{1}{4}(\sin \theta+\sin 3 \theta) \\
\cos \theta \sin ^{2} \theta & =\frac{1}{4}(\cos \theta-\cos 3 \theta) \\
\sin ^{3} \theta & =\frac{1}{4}(3 \sin \theta-\sin 3 \theta)
\end{aligned}
$$

Leibniz's formula

$$
\frac{d}{d x} \int_{a(x)}^{b(x)} f(x, t) d t=\int_{a(x)}^{b(x)} \frac{d f}{d x}(x, t) d t-a^{\prime}(x) f(x, a(x))+b^{\prime}(x) f(x, b(x))
$$

Fourier Transforms: $\quad \hat{u}(\xi)=\int_{-\infty}^{\infty} e^{i \xi x} u(x) d x$

$$
u(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i \xi x} \hat{u}(\xi) d \xi
$$

$u(x)$	$\hat{u}(\xi)$
$\delta(x-a)$	$e^{i a \xi}$
$e^{i k x}$	$2 \pi \delta(k+\xi)$
$e^{-a x^{2}}$	$\sqrt{\frac{\pi}{a}} e^{-\xi^{2} / 4 a}$
$e^{-a\|x\|}$	$\frac{2 a}{a^{2}+\xi^{2}}$
$H(a-\|x\|)$	$2 \frac{\sin (a \xi)}{\xi}$
$u^{(n)}(x)$	$(-i \xi)^{n} \hat{u}(\xi)$
$u * v$	$\hat{u}(\xi) \hat{v}(\xi)$

Here $H(x)=1$ for $x \geq 0$, zero otherwise.

Greens first identity: $\quad \int_{\Omega} u \Delta v+\nabla u \cdot \nabla v d \mathbf{x}=\int_{\partial \Omega} u \frac{\partial v}{\partial n} d A$
Product rule for divergence: $\quad \nabla \cdot(u \mathbf{J})=u \nabla \cdot \mathbf{J}+\mathbf{J} \cdot \nabla u$

