Math 46: Applied Math: Midterm 2

2 hours, 50 points total, 6 questions worth wildly varying numbers of points

1. [10 points] Consider the integral operator $K u(x):=\int_{0}^{1} x y^{2} u(y) d y$
(a) What are the eigenvalue(s) and eigenfunction(s) of this operator?
(b) Solve $K u(x)-u(x)=x^{3}$, or explain why not possible.
(c) Solve $K u(x)=x^{2}$, or explain why not possible.
2. [7 points] Consider the boundary-value problem $-\left(x u^{\prime}\right)^{\prime}=f(x)$ on the interval $x \in[1, e]$ with mixed boundary conditions $u^{\prime}(1)=0$ and $u(e)=0$.
(a) Can a Green's function exist for this problem? (Why?)
(b) If the Green's function can exist, find it, otherwise solve the problem for general $f(x)$ another way.
3. [14 points]
(a) By converting into an ODE, find the eigenvalues and eigenfunctions of the operator $K u(x):=$ $\int_{0}^{1} k(x, y) u(y) d y$ with kernel

$$
k(x, y)= \begin{cases}x(1-y), & x<y \\ y(1-x), & x>y\end{cases}
$$

(b) Solve $K u-\frac{1}{\pi^{2}} u=\sin 3 \pi x$, or explain why not possible.
(c) Solve $K u-\frac{1}{\pi^{2}} u=1$ (that is, the constant function equal to 1), or explain why not possible.
(d) Solve $K u-u=1$, or explain why not possible.
4. [5 points] What can be deduced about the sign of the eigenvalues of $-y^{\prime \prime}+x y=\lambda y$ with boundary conditions $y(0)=y(1)=0$?
5. [4 points] Find a leading-order $\lambda \gg 1$ asymptotic approximation to $\int_{0}^{\pi / 2} e^{-\lambda \tan ^{2} \theta} d \theta$
6. [10 points] Consider the operator $K u(x):=\int_{0}^{1} s u(s) d s$. This question is a little more adventurous.
(a) Use Cauchy-Schwarz inequality to bound the norm $\|K u\|$ in terms of $\|u\|$, for any function u.
(b) Even though it's a Fredholm operator you can use a Neumann series to say things about it. Write the usual Neumann series to solve the problem $u-\lambda K u=f$. [don't be alarmed you've never had to do this before].
(c) Leaving $f(x)$ as a general function, evaluate the first few terms of the series, simplifying as much as possible. Use this to write down an expression for the $n^{t h}$ term.
(d) What condition on λ makes the series converge?
(e) BONUS: By identifying when the series diverges, what do you suspect is the spectrum of K ?

Useful formulae:
Stationary phase ($c=$ interior maximum of g)

$$
\int f(x) e^{\lambda g(x)} d x \approx f(c) e^{\lambda g(c)} \sqrt{\frac{-2 \pi}{\lambda g^{\prime \prime}(c)}}
$$

Binomial

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\cdots
$$

