Math 46: Applied Math: Midterm 1

2 hours, 50 points total, 6 questions worth varying number of points

1. [7 points]

In 1940 the Russian applied mathematician A. Kolmogorov assumed there was a law for turbulent fluid flow relating the four quantities: l (length), E (energy, units of $M L^{2} T^{-2}$), ρ (density, mass per unit volume), and R (dissipation rate, energy per unit time per unit volume). Using this assumption and the Buckingham Pi Theorem, state the simple form the law must have. Show that there is a (famous!) scaling relation $E=$ const $\cdot l^{\alpha}$ when other parameters are held constant; give α.
2. [16 points. Note part c , worth 7 points, is independent of the others]

A nonlinear damped oscillator is given by the initial-value problem

$$
m y^{\prime \prime}+a y^{\prime}+k y^{3}=0 \quad y(0)=0 \quad m y^{\prime}(0)=I
$$

(a) If m is a mass, find the dimensions of the other three parameters a, k, I (recall y is a displacement, i.e. length).
(b) Write down two length scales and two time scales.
(c) Show that when the model is non-dimensionalized using scaling appropriate for the small mass limit (choose time and length scales which don't involve m), the IVP

$$
\varepsilon y^{\prime \prime}+y^{\prime}+y^{3}=0 \quad y(0)=0 \quad \varepsilon y^{\prime}(0)=1
$$

results. What is ε in terms of the original parameters?
(d) Find a leading-order perturbation approximation to the solution of the IVP from (b), and give a crude sketch showing any key features. Here it is written out again:

$$
\varepsilon y^{\prime \prime}+y^{\prime}+y^{3}=0 \quad y(0)=0 \quad \varepsilon y^{\prime}(0)=1 \quad \varepsilon \ll 1
$$

3. [6 points] Find a 3 -term perturbation approximation to the solution of the IVP

$$
y^{\prime}=\frac{1}{1+\varepsilon y^{2} y^{\prime}} \quad y(0)=0
$$

4. [5 points] Find the leading-order perturbation approximation to all roots of $\varepsilon x^{3}-x-2=0$ for $\varepsilon \ll 1$.
5. [5 points] Find the WKB approximation for the large eigenvalues λ of

$$
y^{\prime \prime}+4 \lambda e^{x} y=0 \quad y(0)=y(1)=0
$$

6. [12 points] Short answers:
(a) As $\varepsilon \rightarrow 0$ does the function $f(x, \varepsilon)=\varepsilon \tan (x)$ converge uniformly to zero on $(-\pi / 4, \pi / 4)$? On $(0, \pi / 2) ?$ (Why?)
(b) What can you say about stability and local asymptotic stability for the system $x^{\prime}=-2 x+y$, $y^{\prime}=4 x+y ?$
(c) A linearization of a nonlinear system of two coupled ODEs at a critical points gives the Jacobean $\operatorname{matrix}\left(\begin{array}{rr}0 & 3 \\ -3 & 0\end{array}\right)$. What can you conclude about stability?
(d) At which end(s) would you expect the BVP $\varepsilon y^{\prime \prime}+(1 / 2-x) y^{\prime}+y=0$ with $y(0)=a$ and $y(1)=b$ to be able to support a boundary layer for $\varepsilon \ll 1$? [Do not solve the whole thing!]
(e) State briefly in what class of problem the Poincaré-Linstedt method is needed, and what problem it fixes.
(f) Sketch orbits in the (x, x^{\prime}) plane for a particle at location $x(t)$ subjected to a force $F(x)=x^{2}-1$. BONUS: What kinds of motion are possible and in what energy range?

Useful formulae:
WKB approximation

$$
y=\frac{1}{\sqrt{k(x)}} e^{ \pm \frac{1}{\varepsilon} \int k(x) d x}
$$

Binomial

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\cdots
$$

