Math 46: Applied Math: Final

3 hours, 80 points total, 10 questions worth wildly varying numbers of points

(post-exam typo-corrected version)

1. [9 points] Use singular perturbation methods to find a uniform approximate solution to the boundaryvalue problem

 $\varepsilon y'' - 2y' - e^y = 0, \qquad \varepsilon \ll 1, \qquad y(0) = 0, \qquad y(1) = 0$

As always, remember to check and explain the location of any boundary layer(s).

- 2. [9 points] Consider the differential operator Ly := -y'' 4y acting on functions obeying *mixed* boundary conditions y(0) = 0 and $y'(\pi/2) = 0$ (this might arise for an elastic string stretched over a frictionless hill, fixed at one end and free at the other).
 - (a) Find the complete set of eigenvalues and eigenfunctions of L.

(b) Find the Green's function for the inhomogeneous problem Lu = f.

- (c) What is the *lowest* derivative (zeroth, first, second,...) of the Green's kernel $g(x,\xi)$ that is discontinuous?
- (d) [BONUS:] What is the *spectrum* of the Green's operator $Gu(x) := \int_0^{\pi/2} g(x,\xi) u(\xi) d\xi$?

3. [6 points] Prove that eigenfunctions (with different eigenvalues) of the Laplace operator in a bounded domain Ω , with homogeneous Neumann boundary conditions $(\partial u/\partial n = 0 \text{ on } \partial \Omega)$ are *orthogonal* on the domain.

[BONUS:] The above $\lambda = 0$ eigenfunction has a simple form. Use it to prove that a necessary condition for existence of a solution to the Neumann problem

$$\begin{array}{rcl} \Delta u &=& 0 & \mbox{ in } \Omega, \\ \frac{\partial u}{\partial n} &=& f & \mbox{ on } \partial \Omega \end{array}$$

is that the average value of f on the boundary is zero.

- 4. [8 points] Consider the integral operator $Ku(x) := \int_0^1 (x 3y)u(y)dy$. [Hint: what type of integral operator is it?]
 - (a) Find the eigenvalues of K, and their multiplicities.

(b) Find an eigenfunction of K corresponding to a nonzero eigenvalue.

(c) Is $Ku(x) + \frac{1}{2}u(x) = 1$ (the constant function) soluble? Why? (Don't solve)

(d) Is Ku(x) + u(x) = 1 soluble? Why? (Don't solve)

5. [6 points] Use an energy argument to prove *uniqueness* for the solution to the inhomogeneous heat equation

$$\begin{aligned} -\Delta u(\mathbf{x}, t) + u_t &= f(\mathbf{x}, t) & \mathbf{x} \in \Omega, \ t > 0, \\ u(\mathbf{x}, t) &= g(\mathbf{x}) & \mathbf{x} \in \partial\Omega, \\ u(\mathbf{x}, 0) &\equiv 0 & \mathbf{x} \in \Omega, \end{aligned}$$

in a bounded domain $\Omega \subset \mathbb{R}^n$, where $f(\mathbf{x}, t)$ is a heat source term and $g(\mathbf{x})$ is an imposed boundary temperature distribution.

6. [5 points] Find the convolution of the function $e^{-x^2/2a^2}$ with the function $e^{-x^2/2b^2}$ preferably by using Fourier transforms. (You have just shown how standard deviations add for statistically-independent normal variables!)

7. [13 points] Consider the perturbed initial-value problem for y(t) on t > 0,

$$y'' + y = 4\varepsilon y(y')^2, \qquad \varepsilon \ll 1, \qquad y(0) = 1, \qquad y'(0) = 0$$

(a) Find a 2-term asymptotic approximation using regular perturbation theory. [Hints: You may find the power-reduction identities on the last page useful. You will get partial credit for leaving the 2^{nd} term as the solution to a clearly-specified IVP.]

- (b) Is this a uniform approximation for $t \in (0, \infty)$? Why?
- (c) Use the Poincaré-Lindstedt method to give a more useful 2-term approximation. [Hint: rescale to $\tau = \omega t$ where ω is perturbed from the value 1]

(d) Is this a uniform approximation for $t \in (0, \infty)$?

- 8. [8 points] Consider the 1D wave equation $u_{tt} = c^2 u_{xx}$ in $x \in \mathbb{R}, t > 0$.
 - (a) Use the method of Fourier transforms to write a general solution u(x,t) [Hint: when it comes to writing an ODE solution, use complex exponentials]

(b) Use this to find the solution given 'displacement' initial conditions u(x, 0) = f(x) and $u_t(x, 0) \equiv 0$.

- 9. [5 points] Consider the set of two functions $\{1, x\}$ on the interval $x \in [0, 1]$.
 - (a) Replace the second function by one in $\text{Span}\{1, x\}$ which turns this into an *orthogonal set*.

(b) Find the best approximation (in the mean-square or $L^2[a, b]$ sense) to the function x^2 using this orthogonal set.

- 10. [11 points] Short-answer questions—do give a brief explanation if asked for.
 - (a) The frequency f of a sinusoidal deep-water wave is related only to its wavelength λ and the acceleration due to gravity g. What does dimensional analysis tell you about this relation?

(b) Compute the Fourier transform of the 'one-sided exponential' $u(x) = \begin{cases} e^{-ax} & x \ge 0\\ 0 & x < 0 \end{cases}$

(c) Does a solution to $\int_0^1 \sin x \, \sin y \, u(y) dy = x^2$ exist? Is it unique? Why?

(d) Can a Green's function exist for the ODE problem Ly := -y'' = f with *periodic* boundary conditions y(0) = y(1) and y'(0) = y'(1)? Why?

(e) Is $\frac{\varepsilon}{\varepsilon^2 + x^2}$ pointwise convergent to zero in $x \in (0, \infty)$? Is it uniformly convergent in this same interval? Explain.

Useful formulae

Stationary phase (c = interior maximum of g)

$$\int f(x)e^{\lambda g(x)}dx\approx f(c)e^{\lambda g(c)}\sqrt{\frac{-2\pi}{\lambda g''(c)}}$$

Binomial

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \cdots$$

Error function [note $\operatorname{erf}(0) = 0$ and $\lim_{z \to \infty} \operatorname{erf}(z) = 1$]:

$$\operatorname{erf}(z) := \frac{2}{\sqrt{\pi}} \int_0^z e^{-s^2} ds$$

Euler relations

$$e^{i\theta} = \cos\theta + i\sin\theta, \qquad \cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2}, \qquad \sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

Power-reduction identities

$$\cos^{3}\theta = \frac{1}{4}(3\cos\theta + \cos 3\theta)$$
$$\cos^{2}\theta\sin\theta = \frac{1}{4}(\sin\theta + \sin 3\theta)$$
$$\cos\theta\sin^{2}\theta = \frac{1}{4}(\cos\theta - \cos 3\theta)$$
$$\sin^{3}\theta = \frac{1}{4}(3\sin\theta - \sin 3\theta)$$

Fourier Transforms:

u(x)	$\hat{u}(\xi)$
$\delta(x-a)$	$e^{ia\xi}$
e^{ikx}	$2\pi\delta(k+\xi)$
e^{-ax^2}	$\sqrt{\frac{\pi}{a}}e^{-\xi^2/4a}$
$e^{-a x }$	$\frac{2a}{a^2+\xi^2}$
H(a - x)	$2\frac{\sin(a\xi)}{\xi}$
$u^{(n)}(x)$	$(-i\xi)^n \hat{u}(\xi)$
u * v	$\hat{u}(\xi)\hat{v}(\xi)$