Laurent Series I

Theorem (Laurent's Theorem)

Suppose that f is analytic in

$$
A=\left\{z \in \mathbf{C}: 0 \leq r<\left|z-z_{0}\right|<R \leq \infty\right\}
$$

with $r<R$. Then there are complex constants a_{n} and b_{j} such that

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{j=1}^{\infty} \frac{b_{j}}{\left(z-z_{0}\right)^{j}}
$$

for all $z \in A$. Moreover if C is any positively oriented simple closed contour in A with z_{0} in its interior, then

$$
\begin{aligned}
& a_{n}=\frac{1}{2 \pi i} \int_{C} \frac{f(\omega)}{\left(\omega-z_{0}\right)^{n+1}} d \omega \text { and } \\
& \qquad b_{j}=\frac{1}{2 \pi i} \int_{C} f(\omega)\left(\omega-z_{0}\right)^{j-1} d \omega
\end{aligned}
$$

Laurent Series II

Theorem

Suppose that

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{j=1}^{\infty} \frac{b_{j}}{\left(z-z_{0}\right)^{j}} \tag{1}
\end{equation*}
$$

converges in the annulus

$$
A=\left\{z \in \mathbf{C}: 0 \leq r<\left|z-z_{0}\right|<R \leq \infty\right\}
$$

with $r<R$. Then f is analytic in A and (1) is the Laurent series for f in A. In particular, the coefficients a_{n} and b_{j} are given by the formulas on the previous slide.

Zeros

Definition

If f is analytic at z_{0}, then we say that f has a zero of order $m \geq 1$ at z_{0} if

$$
0=f\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)=\cdots=f^{(m-1)}\left(z_{0}\right)
$$

and $f^{(m)}\left(z_{0}\right) \neq 0$. If $f^{(m)}\left(z_{0}\right)=0$ for all $m \geq 0$, then we call z_{0} a zero of infinite order.

Theorem

Suppose that f is analytic in a domain D. If f has a zero of infinite order a some $z_{0} \in D$, then f is identically zero in D.

