Trigonometric Integrals

Basic Technique

Suppose that $U(x, y)$ is a continuous function on
$R=\left\{(x, y) \in \mathbf{R}^{2}:-1 \leq x, y \leq 1\right\}$. Then

$$
\int_{0}^{2 \pi} U(\cos (\theta), \sin (\theta)) d \theta=\int_{|z|=1} F(z) d z=2 \pi i \sum_{|z|<1} \operatorname{Res}(F ; z)
$$

where

$$
F(z):=U\left(\frac{1}{2}\left(z+\frac{1}{z}\right), \frac{1}{2 i}\left(z-\frac{1}{z}\right)\right) \cdot \frac{1}{i z} .
$$

Improper Adventures

- The improper integral $\int_{-\infty}^{\infty} f(x) d x$ converges only when both $\int_{a}^{\infty} f(x) d x$ and $\int_{-\infty}^{a} f(x) d x$ converge for some (hence all) $a \in(-\infty, \infty)$.
- We define p.v. $\int_{-\infty}^{\infty} f(x) d x=\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x$.
- If $\int_{-\infty}^{\infty} f(x) d x$ converges, then

$$
\int_{-\infty}^{\infty} f(x) d x=\text { p.v. } \int_{-\infty}^{\infty} f(x) d x . \text { But the converse can fail. }
$$

Back to Calculus II

Theorem (Comparison Theorem)

Suppose that $|f(x)| \leq g(x)$ for all $x \in \mathbf{R}$. Then if $\int_{-\infty}^{\infty} g(x) d x$ converges, so does $\int_{-\infty}^{\infty} f(x) d x$.

Theorem (Plus Two)

Suppose that $p(x)$ and $q(x)$ are polynomials with real coefficients such that

$$
\operatorname{deg} p(x)+2 \leq \operatorname{deg} q(x)
$$

and that $q(x)$ has no zeros on the real axis. Then

$$
\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} d x
$$

converges.

Limits

Lemma (Crude Limit Lemma)

Suppose that $p(z)$ and $q(z)$ are polynomials with $\operatorname{deg} p(z)+2 \leq \operatorname{deg} q(z)$. Let

$$
F(z)=\frac{p(z)}{q(z)} e^{i a z} \quad \text { with } a \geq 0
$$

Let C_{R}^{+}be the top half of the positively oriented circle $|z|=R$ from R to $-R$. Then

$$
\lim _{R \rightarrow \infty} \int_{C_{R}^{+}} F(z) d z=0
$$

Remark

Note that a must be real and that the special case $a=0$ applies to all rational functions with the degree of the denominator at least 2 more that the degree of the denominator.

Theorem (Improper Integrals Plus 2)

Suppose that $p(z)$ and $q(z)$ are polynomials such that $\operatorname{deg} p(z)+2 \leq \operatorname{deg} q(z)$.

Let

$$
F(z)=\frac{p(z)}{q(z)} e^{i a z} \quad \text { with } a \geq 0
$$

If $q(z)$ has no zeros on the real-axis, then

$$
\int_{-\infty}^{\infty} F(x) d x=2 \pi i \sum_{\operatorname{Im} z>0} \operatorname{Res}(F ; z)
$$

