Theorem

Suppose that D is a bounded domain and that $f : \overline{D} \subset \mathbf{C} \to \mathbf{C}$ is continuous and analytic on D. Then |f(z)| attains its maximum on the boundary ∂D of D.

Sequences of Functions

Definition

Let $\{F_n\}$ be a sequence of complex-valued functions on a set D.

• We say that $\{F_n\}$ converges pointwise to a function $F: D \subset \mathbf{C} \to \mathbf{C}$ if for all $z \in D$ we have

$$\lim_{n\to\infty}F_n(z)=F(z).$$

Thus for all $z \in D$ and $\epsilon > 0$ there is a $N = N(\epsilon, z)$ such that $n \ge N$ implies

$$\left|F(z)-F_n(z)\right|<\epsilon.$$

2 We say that $\{F_n\}$ converges uniformly to a function $F: D \subset \mathbf{C} \to \mathbf{C}$ if for all $\epsilon > 0$ there is a $N = N(\epsilon)$ such that $n \ge N$ implies that

$$|F(z) - F_n(z)| < \epsilon$$
 for all $z \in D$.

Definition

Let D be a set. We say a series

$$\sum_{n=0}^{\infty} f_n(z) \tag{1}$$

of functions $f : D \subset \mathbf{C} \to \mathbf{C}$ converges pointwise to a function Fon a set D if the sequence of partial sums $\{F_n\}$ given by

$$F_n(z) = \sum_{k=1}^n f_k(z)$$

converge pointwise F on D. Similarly, we say (1) converges uniformly to F on D if the partial sums $\{F_n\}$ converge uniformly to F on D.

The Basic Example

Consider the series
$$\sum_{n=0}^{\infty} \left(\frac{z}{z_0}\right)^n$$
 with partial sums

$$F_n(z) = \sum_{k=0}^n \left(\frac{z}{z_0}\right)^k = \frac{\left(\frac{z}{z_0}\right)^{n+1} - 1}{\frac{z}{z_0} - 1}.$$

If we saw last time that F_n converges pointwise to

$$F(z)=\frac{1}{1-\frac{z}{z_0}}.$$

<ロ> (四) (四) (日) (日) (日)

on the disk $D = B_{|z_0|}(0)$.

Example Continued

We also saw that

$$\begin{split} \left| F(z) - F_n(z) \right| &= \left| \frac{1}{1 - \frac{z}{z_0}} - \frac{\left(\frac{z}{z_0}\right)^{n+1} - 1}{\frac{z}{z_0} - 1} \right| \\ &= \left| \frac{\left(\frac{z}{z_0}\right)^{n+1}}{1 - \frac{z}{z_0}} \right| \\ &= \frac{\left| \frac{z}{z_0} \right|^{n+1}}{\left| 1 - \frac{z}{z_0} \right|} \end{split}$$