Maximum Modulus Theorem II

Theorem

Suppose that D is a bounded domain and that $f: \bar{D} \subset \mathbf{C} \rightarrow \mathbf{C}$ is continuous and analytic on D. Then $|f(z)|$ attains its maximum on the boundary ∂D of D.

Sequences of Functions

Definition

Let $\left\{F_{n}\right\}$ be a sequence of complex-valued functions on a set D.
(1) We say that $\left\{F_{n}\right\}$ converges pointwise to a function $F: D \subset \mathbf{C} \rightarrow \mathbf{C}$ if for all $z \in D$ we have

$$
\lim _{n \rightarrow \infty} F_{n}(z)=F(z)
$$

Thus for all $z \in D$ and $\epsilon>0$ there is a $N=N(\epsilon, z)$ such that $n \geq N$ implies

$$
\left|F(z)-F_{n}(z)\right|<\epsilon
$$

(2) We say that $\left\{F_{n}\right\}$ converges uniformly to a function $F: D \subset \mathbf{C} \rightarrow \mathbf{C}$ if for all $\epsilon>0$ there is a $N=N(\epsilon)$ such that $n \geq N$ implies that

$$
\left|F(z)-F_{n}(z)\right|<\epsilon \quad \text { for all } z \in D .
$$

Series

Definition

Let D be a set. We say a series

$$
\begin{equation*}
\sum_{n=0}^{\infty} f_{n}(z) \tag{1}
\end{equation*}
$$

of functions $f: D \subset \mathbf{C} \rightarrow \mathbf{C}$ converges pointwise to a function F on a set D if the sequence of partial sums $\left\{F_{n}\right\}$ given by

$$
F_{n}(z)=\sum_{k=1}^{n} f_{k}(z)
$$

converge pointwise F on D. Similarly, we say (1) converges uniformly to F on D if the partial sums $\left\{F_{n}\right\}$ converge uniformly to F on D.

Consider the series $\sum_{n=0}^{\infty}\left(\frac{z}{z_{0}}\right)^{n}$ with partial sums

$$
F_{n}(z)=\sum_{k=0}^{n}\left(\frac{z}{z_{0}}\right)^{k}=\frac{\left(\frac{z}{z_{0}}\right)^{n+1}-1}{\frac{z}{z_{0}}-1}
$$

If we saw last time that F_{n} converges pointwise to

$$
F(z)=\frac{1}{1-\frac{z}{z_{0}}}
$$

on the disk $D=B_{\left|z_{0}\right|}(0)$.

Example Continued

We also saw that

$$
\begin{aligned}
\left|F(z)-F_{n}(z)\right| & =\left|\frac{1}{1-\frac{z}{z_{0}}}-\frac{\left(\frac{z}{z_{0}}\right)^{n+1}-1}{\frac{z}{z_{0}}-1}\right| \\
& =\left|\frac{\left(\frac{z}{z_{0}}\right)^{n+1}}{1-\frac{z}{z_{0}}}\right| \\
& =\frac{\left|\frac{z}{z_{0}}\right|^{n+1}}{\left|1-\frac{z}{z_{0}}\right|}
\end{aligned}
$$

