Residues

Definition

If f has an isolated singularity at z_{0} with Laurent series

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{j=1}^{\infty} \frac{b_{j}}{\left(z-z_{0}\right)^{j}}
$$

for $z \in B_{R}^{\prime}\left(z_{0}\right)$ with $R>0$, then we call b_{1} the residue of f at z_{0} and write

$$
\operatorname{Res}\left(f ; z_{0}\right)=b_{1} .
$$

Basics

Lemma

If f has a simple pole at z_{0}, then

$$
\operatorname{Res}\left(f ; z_{0}\right)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)
$$

Lemma (Basic Simple Pole Lemma)

If g and h are analytic at z_{0} such that $g\left(z_{0}\right) \neq 0$ and such that h has a simple zero at z_{0}, then

$$
f(z):=\frac{g(z)}{h(z)}
$$

has a simple pole at z_{0} and

$$
\operatorname{Res}\left(f ; z_{0}\right)=\frac{g\left(z_{0}\right)}{h^{\prime}\left(z_{0}\right)}
$$

General Poles

Lemma

Suppose that f has a pole of order m at z_{0}. Then

$$
\operatorname{Res}\left(f ; z_{0}\right)=\frac{1}{(m-1)!} \lim _{z \rightarrow z_{0}} \frac{d^{m-1}}{d z^{m-1}}\left(\left(z-z_{0}\right)^{m} f(z)\right)
$$

Cauchy Residue Theorem

Theorem (Cauchy Residue Theorem)

Suppose that f is analytic on and inside a simple closed contour Γ except for isolated singularities at z_{1}, \ldots, z_{n} inside of Γ. Then

$$
\begin{equation*}
\int_{\Gamma} f(z) d z=2 \pi i \sum_{k=1}^{m} \operatorname{Res}\left(f ; z_{k}\right) \tag{1}
\end{equation*}
$$

Remark (Notation)

We often write (1) as

$$
\int_{\Gamma} f(z) d z=2 \pi i \sum_{z \text { inside } \Gamma} \operatorname{Res}(f ; z)
$$

with the understanding that the sum is finite since $\operatorname{Res}(f ; z)=0$ if z is not a pole or essential singularity.

Trigonometric Integrals

- Observe that if we parameterize the positively oriented circle $|z|=1$ by $z(t)=e^{i \theta}$ for $\theta \in[0,1]$ then

$$
\int_{|z|=1} F(z) d z=\int_{0}^{2 \pi} F\left(e^{i \theta}\right) i e^{i \theta} d \theta
$$

- Furthermore, if $z=e^{i \theta}$ lies on the circle $|z|=1$, then

$$
\cos (\theta)=\frac{1}{2}\left(z+\frac{1}{z}\right) \quad \text { while } \quad \sin (\theta)=\frac{1}{2 i}\left(z-\frac{1}{z}\right) .
$$

