Zeros

Theorem

Suppose that f is a non-constant analytic function on a domain D. If $z_0 \in D$ is a zero of f, then z_0 has finite order $m \ge 1$ and there is an analytic function g on D such that $g(z_0) \ne 0$ and

$$f(z) = (z - z_0)^m g(z)$$
 for all $z \in D$.

Corollary

Suppose that f is a non-constant analytic function on a domain D. Then the zeros of f are isolated. That is, if $z_0 \in D$ and $f(z_0) = 0$, then there is a r > 0 such that

$$f(z) \neq 0$$
 if $z \in B'_r(z_0)$.

Isolated Singularities

Definition

Suppose that f is analytic in $B'_R(z_0)$ for some R > 0. The we call z_0 an isolated singularity for f.

Remark (Key Remark)

Suppose that f has an isolated singularity at z_0 . Then f has a Laurent series

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{j=1}^{\infty} \frac{b_j}{(z - z_0)^j}$$

converging in some $B'_R(z_0)$ with R>0. The coefficients a_n and b_j depend only on f and are given by the formulas in Laurent's Theorem.

Flavors of Isolated Singularities

Definition

Suppose that f has an isolated singularity at z_0 with associated Laurent series

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{j=1}^{\infty} \frac{b_j}{(z - z_0)^j}$$
 for $z \in B'_R(z_0)$

for R > 0.

- **1** If $b_j = 0$ for all j, then we call z_0 a removable singularity.
- ② If $b_m \neq 0$ and $b_j = 0$ for all j > m, then we call z_0 a pole of order m.
- 3 If there are infinitely many j such that $b_j \neq 0$, then we call z_0 and essential singularity.

Classifying Removable Singularities

$\mathsf{Theorem}$

Suppose that f has an isolated singularity at z_0 . Then the following are equivalent.

- $\mathbf{0}$ z_0 is a removable singularity for f.
- 2 We can define, or re-define if necessary, $f(z_0)$ so that f is analytic at z_0 .
- $\lim_{z \to z_0} f(z) \text{ exists.}$
- f is bounded near z_0 ; that is, there is a M>0 and a r>0 such that $|f(z)| \leq M$ if $z \in B'_r(z_0)$.