Improper Integrals with Trigonometric Functions

Theorem (Improper Integrals

Suppose that $p(z)$ and $q(z)$ are polynomials with real coefficients such that

$$
\operatorname{deg} p(z)+1 \leq \operatorname{deg} q(z)
$$

Let

$$
F(z)=\frac{p(z)}{q(z)} e^{i a z}
$$

Then if $q(x)$ has no zeros on the real axis and $a>0$ then

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \cos (a x) d x=\operatorname{Re}\left(2 \pi i \sum_{\operatorname{Im} z>0} \operatorname{Res}(F ; z)\right) \\
& \int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \sin (a x) d x=\operatorname{Im}\left(2 \pi i \sum_{\operatorname{Im} z>0} \operatorname{Res}(F ; z)\right)
\end{aligned}
$$

While we've been concentrating on definite and improper integrals, you have been doing some nice mathematics on homework!

Definition (The Index)

If Γ is a closed contour (not necessarily simple) and $a \notin \Gamma$, then the index of Γ about a is

$$
\operatorname{Ind}_{\Gamma}(a)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{1}{z-a} d z
$$

Remark

You proved on homework that $\operatorname{Ind} \Gamma(a)$ is always an integer. Drawing pictures and using the Deformation Invariance Theorem helps to convince us that $\operatorname{Ind}_{\Gamma}(a)$ counts the number of times Γ wraps around a is a counterclockwise direction.

In a Different Course

Theorem (The Cauchy Integral Formula w/o the Jordan Curve Theorem)

Suppose that f is analytic in a simply connected domain D and that Γ is a closed contour in D. Then for any $z \in D \backslash \Gamma$,

$$
\operatorname{Ind}_{\Gamma}(z) f(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(\omega)}{\omega-z} d \omega
$$

Remark

Before anyone asks, you're not responsible for this.

More Good Homework

Theorem (Homework)

Suppose that f is analytic on and inside a simple closed contour Γ and that f has no zeros on Г. We (can) assume that f has only finitely many zeros inside Γ. Let N_{f} be the number of zeros of f inside of Γ counted up to multiplicity. Then

$$
N_{f}=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f^{\prime}(z)}{f(z)} d z
$$

Even Better

Theorem (Homework)

Suppose that f is analytic on and inside a simple closed contour Γ and that f has no zeros on Γ. Let $f(\Gamma)$ be the contour $\{f(z): z \in \Gamma\}$. Then

$$
\frac{1}{2 \pi i} \int_{\Gamma} \frac{f^{\prime}(z)}{f(z)} d z=N_{f}=\operatorname{lnd}_{f(\Gamma)}(0)
$$

Proof that $N_{f}=\operatorname{Ind}_{f(\Gamma)}(0)$

Proof.

Suppose that Γ is parameterized by $z:[0,1] \rightarrow \mathbf{C}$ so that $f(\Gamma)$ is parameterized by $t \mapsto f(z(t))$ for $t \in[0,1]$. Then

$$
\begin{aligned}
\operatorname{Ind}_{f(\Gamma)}(0) & =\frac{1}{2 \pi i} \int_{f(\Gamma)} \frac{1}{z} d z \\
& =\frac{1}{2 \pi i} \int_{0}^{1} \frac{1}{f(z(t))} f^{\prime}(z(t)) z^{\prime}(t) d t \\
& =\frac{1}{2 \pi i} \int_{0}^{1} \frac{f^{\prime}(z(t))}{f(z(t))} z^{\prime}(t) d t \\
& =\frac{1}{2 \pi i} \int_{\Gamma} \frac{f^{\prime}(z)}{f(z)} d z \\
& =N_{f}
\end{aligned}
$$

Walking the Dog

Theorem (Walking the Dog Lemma)

Let Γ_{0} and Γ_{1} be closed contours parameterized by $z_{k}:[0,1] \rightarrow \mathbf{C}$ with $k=0$ and $k=1$, respectively. Suppose that for some $a \in \mathbf{C}$ we have

$$
\left|z_{0}(t)-z_{1}(t)\right|<\left|z_{0}(t)-a\right| \quad \text { for all } t \in[0,1] .
$$

Then

$$
\operatorname{Ind}_{\Gamma_{0}}(a)=\operatorname{Ind}_{\Gamma_{1}}(a)
$$

Remark

This says that if I walk Willy around the Green so that Willy is always closer to me than I am to the bonfire, then Willy and I circle the bonfire the same number of times.

