Theorem (Cauchy's Integral Formula for the Derivatives)

Suppose that f is analytic on and inside a simple closed contour Γ . Let D be the interior of Γ . Then for all $n \ge 0$, $f^{(n)}(z)$ exists for all $z \in D$ and

$$f^{(n)}(z) = rac{n!}{2\pi i} \int_{\Gamma} rac{f(\omega)}{(\omega-z)^{n+1}} \, d\omega.$$
 for all $z\in D$.

Remark

Note that the case n = 0 is just the usual Cauchy Integral Formula.

Theorem (Morera's Theorem)

Suppose that f is continuous on a domain D and that for all closed contours Γ in D we have

$$\int_{\Gamma} f(z) \, dz = 0.$$

The f is analytic on D.

Theorem (Cauchy's Estimates)

Suppose that f is analytic on $B_R(z_0)$ and that $|f(z)| \le M$ for all $z \in B_R(z_0)$. Then for n = 0, 1, 2, ..., we have

$$\left|f^{(n)}(z_0)\right| \leq \frac{n!M}{R^n}.$$

Theorem (Liouville's Theorem)

A bounded entire function must be constant.

Theorem (Maximum Modulus Principle)

Suppose that f is analytic in a domain D and that there is a $z_0 \in D$ such that

$$|f(z)| \leq |f(z_0)|$$
 for all $z \in D$.

Then f is constant.

Remark (Bounded Regions)

- Recall that a domain D is bounded if there is a R > 0 such that D ⊂ B_R(0).
- The boundary ∂D of D is the set of points z such that every open ball $B_r(z)$ contains points in D and not in D.
- The closure \overline{D} of D is the union of D and ∂D . Of course, \overline{D} is closed.
- If D is bounded, then \overline{D} is closed and bounded.
- Thus if *D* is a bounded domain, then any continuous real-valued function on \overline{D} must attain its maximum and minimum on \overline{D} .