Limits

The key to our "standard approach" to improper integrals is our "Crude Limit Lemma":

Lemma (Crude Limit Lemma)

Suppose that p(z) and q(z) are polynomials with deg $p(z) + 2 \le \deg q(z)$. Let

$${\sf F}(z)=rac{p(z)}{q(z)}e^{iaz} \quad {\it with} \,\, a\geq 0.$$

Let C_R^+ be the top half of the positively oriented circle |z| = R from R to -R. Then

$$\lim_{R\to\infty}\int_{C_R^+}F(z)\,dz=0.$$

This is the essential ingredient in the proof of our basic result from last lecture.

Theorem (Improper Integrals Plus 2)

Suppose that p(z) and q(z) are polynomials such that

 $\deg p(z) + 2 \leq \deg q(z).$

Let

$$F(z) = rac{p(z)}{q(z)}e^{iaz}$$
 with $a \ge 0$.

If q(z) has no zeros on the real-axis, then

$$\int_{-\infty}^{\infty} F(x) \, dx = 2\pi i \sum_{\operatorname{Im} z > 0} \operatorname{Res}(F; z).$$

(ロ・・部・・ドレ・ド・ ほうのくぐ

Proof of Theorem II+2.

For large R > 0, all the singularities of F lie inside $\Gamma_R = [-R, R] + C_R^+$. Hence

$$2\pi i \sum_{\lim z>0} \operatorname{Res}(F; z) = \int_{\Gamma_R} F(z) \, dz = \int_{-R}^R F(z) \, dx + \int_{C_R^+} F(z) \, dz.$$

Now we let $R \to \infty$ and use our CL Lemma and what we know about convergence of improper integrals.

Improper Integrals with Trigonometric Functions

Theorem (Improper Integrals Plus 1)

Suppose that p(z) and q(z) are polynomials with real coefficients such that

$$\deg p(z) + 1 \leq \deg q(z).$$

Let

$$F(z)=\frac{p(z)}{q(z)}e^{iaz}.$$

Then if q(x) has no zeros on the real axis and a > 0 then

$$\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \cos(ax) \, dx = \operatorname{Re}\left(2\pi i \sum_{\operatorname{Im} z > 0} \operatorname{Res}(F; z)\right)$$
$$\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \sin(ax) \, dx = \operatorname{Im}\left(2\pi i \sum_{\operatorname{Im} z > 0} \operatorname{Res}(F; z)\right)$$

Remark

The previous theorem does not apply to integrals such as

$$\int_{-\infty}^{\infty} \frac{\cos(x)}{x^2 + 4i} \, dx.$$

The denominator is not a polynomial with real coefficients so

$$\operatorname{Re}\left(\int_{-\infty}^{\infty} \frac{e^{iax}}{x^2 + 4i} \, dx\right) \neq \int_{-\infty}^{\infty} \frac{\cos(x)}{x^2 + 4i} \, dx.$$

The approach in the textbook can deal with this situation, but involves computing all the residues of F—not just those in the upper half-plane—and hence considerably more algebra. We are not going to worry about such things in this course.