Limits

The key to our "standard approach" to improper integrals is our "Crude Limit Lemma":

Lemma (Crude Limit Lemma)

Suppose that $p(z)$ and $q(z)$ are polynomials with $\operatorname{deg} p(z)+2 \leq \operatorname{deg} q(z)$. Let

$$
F(z)=\frac{p(z)}{q(z)} e^{i a z} \quad \text { with } a \geq 0
$$

Let C_{R}^{+}be the top half of the positively oriented circle $|z|=R$ from R to $-R$. Then

$$
\lim _{R \rightarrow \infty} \int_{C_{R}^{+}} F(z) d z=0
$$

This is the essential ingredient in the proof of our basic result from last lecture.

Improper Integrals of Rational Functions Plus

Theorem (Improper Integrals Plus 2)

Suppose that $p(z)$ and $q(z)$ are polynomials such that

$$
\operatorname{deg} p(z)+2 \leq \operatorname{deg} q(z)
$$

Let

$$
F(z)=\frac{p(z)}{q(z)} e^{i a z} \quad \text { with } a \geq 0
$$

If $q(z)$ has no zeros on the real-axis, then

$$
\int_{-\infty}^{\infty} F(x) d x=2 \pi i \sum_{\operatorname{Im} z>0} \operatorname{Res}(F ; z)
$$

Proof

Proof of Theorem II +2 .

For large $R>0$, all the singularities of F lie inside $\Gamma_{R}=[-R, R]+C_{R}^{+}$. Hence

$$
2 \pi i \sum_{\operatorname{Im} z>0} \operatorname{Res}(F ; z)=\int_{\Gamma_{R}} F(z) d z=\int_{-R}^{R} F(z) d x+\int_{C_{R}^{+}} F(z) d z
$$

Now we let $R \rightarrow \infty$ and use our CL Lemma and what we know about convergence of improper integrals.

Improper Integrals with Trigonometric Functions

Theorem (Improper Integrals

Suppose that $p(z)$ and $q(z)$ are polynomials with real coefficients such that

$$
\operatorname{deg} p(z)+1 \leq \operatorname{deg} q(z)
$$

Let

$$
F(z)=\frac{p(z)}{q(z)} e^{i a z}
$$

Then if $q(x)$ has no zeros on the real axis and $a>0$ then

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \cos (a x) d x=\operatorname{Re}\left(2 \pi i \sum_{\operatorname{Im} z>0} \operatorname{Res}(F ; z)\right) \\
& \int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \sin (a x) d x=\operatorname{Im}\left(2 \pi i \sum_{\operatorname{Im} z>0} \operatorname{Res}(F ; z)\right)
\end{aligned}
$$

The Textbook's Approach

Remark

The previous theorem does not apply to integrals such as

$$
\int_{-\infty}^{\infty} \frac{\cos (x)}{x^{2}+4 i} d x
$$

The denominator is not a polynomial with real coefficients so

$$
\operatorname{Re}\left(\int_{-\infty}^{\infty} \frac{e^{i a x}}{x^{2}+4 i} d x\right) \neq \int_{-\infty}^{\infty} \frac{\cos (x)}{x^{2}+4 i} d x
$$

The approach in the textbook can deal with this situation, but involves computing all the residues of F-not just those in the upper half-plane-and hence considerably more algebra. We are not going to worry about such things in this course.

