The Exam

- The preliminary exam is Friday.
- The exam is in two parts. The "in-class" part taken during our lecture period and a short "take-home" part due Monday prior to the start of class.
- Just as in the sample exam, the in-class part is primarily objective concentrating on definitions, statements of results, and what I believe to be straightforward computations or short arguments.
- The exam covers everything we did through and including section 3.5 in the text. There is nothing from Chapter 4.
- Because of the exam, this week, our homework is due on Wednesday.

Last Time

Definition

Suppose that γ is a directed smooth curve with admissible parameterization $z:[a,b]\to\mathbb{C}$. If f is continuous on γ , then the contour integral of f along γ is

$$\int_{\gamma} f(z) dz := \int_{a}^{b} f(z(t))z'(t) dt. \tag{1}$$

If $\Gamma = \gamma_1 + \cdots + \gamma_n$ and f is continuous on Γ , then the contour integral of f along Γ is

$$\int_{\Gamma} f(z) dz := \sum_{k=1}^{n} \int_{\gamma_{k}} f(z) dz.$$

Remark

The value of (1) is independent of our choice of an admissible parameterization for γ .

Key Theorem

Theorem

Let C_r be the positively oriented circle of radius r centered at z_0 . Then for any $n \in \mathbf{Z}$,

$$\int_{C_r} (z - z_0)^n dz = \begin{cases} 2\pi i & \text{if } n = -1, \text{ and} \\ 0 & \text{if } n \neq -1. \end{cases}$$

Observation

- Suppose that f is continuous on the contour $\Gamma = \gamma_1 + \cdots + \gamma_n$ and that $z : [a,b] \to \mathbb{C}$ is an admissible parameterization of Γ .
- That means there is a partition $\{a=\tau_0<\tau_1<\dots< t_n=b\}$ of [a,b] such that the restriction of z to $[\tau_{k-1},\tau_k]$ is an admissible paramterization of γ_k for $k=1,\dots,n$.
- Thus

$$\int_{\Gamma} f(z) dz = \sum_{k=1}^{n} \int_{\gamma_{k}} f(z) dz = \sum_{k=1}^{n} \int_{\tau_{k-1}}^{\tau_{k}} f(z(t)) z'(t) dt$$
$$= \int_{a}^{b} f(z(t)) z'(t) dt.$$

• If Γ consists of a single point z_0 , then we define $\int_{\Gamma} f(z) \, dz$ to be zero. This is consistent with saying that the constant function $z:[a,b]\to C$ given by $z(t)=z_0$ is an admissible parameterization of Γ and "evaluating"

$$\int_{\Gamma} f(z) dz = \int_{a}^{b} f(z(t))z'(t) dt.$$

