Theorem (CR-I)

Suppose that f(x + iy) = u(x, y) + iv(x, y) is complex differentiable at $z_0 = x_0 + iy_0$. Then

$$f'(z_0) = f_x(z_0) = -if_y(z_0).$$

In particular, both u and v have partial derivatives at (x_0, y_0) and

$$u_x(x_0, y_0) = v_y(x_0, y_0)$$
 and $u_y(x_0, y_0) = -v_x(x_0, y_0).$ (1)

Definition

We call (1) the Cauchy-Riemann Equations for f at $z_0 = x_0 + iy_0$.

Sufficient Conditions

Theorem (CR-II)

Suppose that f(x + iy) = u(x, y) + iv(x, y) is defined on $D = B_r(z_0)$ for some r > 0. Let $z_0 = x_0 + iy_0$. Suppose that

1 *u* and *v* have partial derivatives in *D*.

- 2 The partials of u and v are continuous at (x_0, y_0) .
- The Cauchy-Riemann equations hold for f at (x₀, y₀). Then f'(z₀) exists.

Corollary

Suppose that f(z) = u(z) + iv(z) is defined on a domain D such that u and v have continuous partials throughout D and such that the Cauchy-Riemann equations for f hold throughout D. Then f is analytic on D.