I've fallen behind the posted homework assignments. So what was originally today's assignment is postponed until Monday, so this week's assignment—including this coming Monday's—will be due Wednesday. We'll meet in our x-hour next week (and the next), so the assignments for next week's Tuesday, Wednesday, and Friday will be the assignment for that week.

Theorem (The Cauchy Integral Formula)

Suppose that f is analytic on a simply connected domain D and that Γ is a simple closed contour in D. If z lies inside of Γ , then

$$f(z) = rac{1}{2\pi i} \int_{\Gamma} rac{f(\omega)}{\omega - z} \, d\omega.$$

Remark

Things to keep in mind when trying to apply the Cauchy Integral Formula.

・日・ ・ ヨ・ ・ ヨ・

臣

- **1** *D* must be simply connected.
- O Γ must be a simple closed contour.
- \bigcirc f must be analytic on D.
- z must be inside of Γ .

Theorem (The Jordan Curve Theorem [NC-17])

If Γ is a simple closed contour in the plane, then the complement of Γ consists of two domains each of which has Γ as its boundary. One domain is unbounded. The bounded domain is called the interior of Γ . The interior is simply connected.

Remark

If Γ is a simple closed contour, we will take it on faith that if f is "analytic on and inside a simple closed contour Γ ", then f is analytic on a simply connected domain D containing Γ . This allows the following corollaries of the Cauchy Integral Theorem (CIT) and the Cauchy Integral Formula (CIF).

Theorem

Suppose that f is analytic on and inside a simple closed contour Γ .

[CIT] We have

$$\int_{\Gamma}f(z)\,dz=0.$$

② [CIF] If z lies inside Γ, then

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\omega)}{\omega - z} d\omega.$$

Writing higher derivatives gets difficult: f', f'', f''', \dots So in general, for $n \ge 1$ we write

$$\frac{d^n f}{dz^n}(x) := f^{(n)}(z).$$

And by convention,

$$f^{(0)}(z)=f(z).$$

Definition

Let *D* be a domain in **C**. A function $f : D \subset \mathbf{C} \to \mathbf{C}$ is called \mathbf{C}^{∞} or smooth if the *n*th-derivative $f^{(n)}(z)$ of *f* exists for all $n \ge 0$ and all $z \in D$. Similarly, a real-valued function $u : D \subset \mathbf{C} \to \mathbf{R}$ is called smooth if *u* has continuous partials of all orders in *D*.

Theorem (Riemann's Theorem)

Suppose that g is continuous on a contour Γ . Let $D = \{ z \in \mathbf{C} : z \notin \Gamma \}$. For each n = 1, 2, 3, ..., define

$$F_n(z) = \int_{\Gamma} rac{g(\omega)}{(\omega-z)^n} \, d\omega \quad \textit{for } z \in D.$$

Then F_n is analytic on D and for each n,

$$F'_n(z) = nF_{n+1}(z) = n\int_{\Gamma} \frac{g(\omega)}{(\omega-z)^{n+1}} d\omega.$$

The proof is tricky. We'll start by proving the result for n = 1. Then we'll show that if $n \ge 2$ and we know the result for n - 1, then it also holds for n. This will show that it holds for all n.

The Proof

- Fix $z_0 \in D$.
- **2** Show that F_1 is continuous on D.
- **③** Define G_n and note that G_1 is continuous on D.
- Show that $F'_1(z_0) = G_1(z_0) = F_2(z_0)$ (and hence $G'_1(z) = G_2(z)$).
- So Assume that for some $n \ge 2$ we know that $F'_{n-1}(z) = nF_n(z)$ (and hence $G'_{n-1}(z) = nG_n(z)$).
- Observe that

$$F_n(z) - F(z_0) = G_{n-1}(z) - G_{n-1}(z_0) + (z - z_0)G_n(z_0)$$

- **O** Show F_n and G_n are continuous.
- **3** Finish by showing $F'_n(z_0) = nF_{n+1}(z_0)$.