Definition

A domain D is called simply connected is every closed contour Γ in D can be continuously deformed to a point in D.

Examples

The whole complex plane \mathbb{C} and any open disk $B_r(z_0)$ are simply connected. We'll see shortly that the annulus $A = \{ z \in \mathbb{C} : 1 < |z| < 2 \}$ is not simply connected.

Here is our first "major result". Note that I mistakenly called this "The Domain Invariance Theorem" on Monday.

Theorem (The Deformation Invariance Theorem)

Suppose that f is analytic is a domain D and that Γ_0 and Γ_1 are closed contours in D such that Γ_0 can be continuously deformed into Γ_1 inside of D. Then

$$\int_{\Gamma_0} f(z) \, dz = \int_{\Gamma_1} f(z) \, dz.$$

・ロ・・団・・団・・団・ つんの

The Cauchy Integral Theorem

Theorem (The Cauchy Integral Theorem)

Suppose that f is analytic in a simply connected domain D. Then for any closed contour Γ in D,

$$\int_{\Gamma} f(z) \, dz = 0.$$

Theorem

If f is analytic in a simply connected domain D, then f has an antiderivative in D.

Corollary

The annulus $A = \{ z \in \mathbb{C} : 1 < |z| < 2 \}$ is not simply connected.

Corollary

If D is simply connected and $0 \notin D$, then there is an analytic branch of log z in D.