Last Time

Recall that or $z = |z|e^{i\theta} \neq 0$, we have

$$\begin{aligned} \log(z) &= \{ w \in \mathbb{C} : e^w = z \} \\ &= \ln(|z|) + i \arg(z) \\ &= \{ \ln(|z|) + iy : y \in \arg(z) \}. \end{aligned}$$

Definition

If f(z) is a multiple-valued function in a domain D, then we say that a continuous function F on D is a branch of f(z) in D if $F(z) \in f(z)$ for all $z \in D$.

Lemma

If $\mathcal{L}_{\tau}(x) = \ln(|z|) + i \arg_{\tau}(z)$, then \mathcal{L}_{τ} is an analytic branch of $\log(z)$ in D_{τ}^* with $\frac{d}{dz}(\mathcal{L}_{\tau}(z)) = \frac{1}{z}$.

Definition

We call $Log(z) := \mathcal{L}_{-\pi}(z)$ the principal branch of log(z).

Note that Log(z) is an analytic branch of log z in $D^* = D^*_{-\pi}$.

Remark

The question of whether or not there is an analytic branch of a multiple-valued function f(z) such as $\log z$ in a given domain D is very subtle. We saw by example, that $\log z$ can have an analytic branch in a domain D by cleverly pasting together multiple \mathcal{L}_{τ} 's.