Last Time

Recall that or $z=|z| e^{i \theta} \neq 0$, we have

$$
\begin{aligned}
\log (z) & =\left\{w \in \mathbb{C}: e^{w}=z\right\} \\
& =\ln (|z|)+i \arg (z) \\
& =\{\ln (|z|)+i y: y \in \arg (z)\} .
\end{aligned}
$$

Definition

If $f(z)$ is a multiple-valued function in a domain D, then we say that a continuous function F on D is a branch of $f(z)$ in D if $F(z) \in f(z)$ for all $z \in D$.

Examples

Lemma

If $\mathcal{L}_{\tau}(x)=\ln (|z|)+i \arg _{\tau}(z)$, then \mathcal{L}_{τ} is an analytic branch of $\log (z)$ in D_{τ}^{*} with $\frac{d}{d z}\left(\mathcal{L}_{\tau}(z)\right)=\frac{1}{z}$.

Definition

We call $\log (z):=\mathcal{L}_{-\pi}(z)$ the principal branch of $\log (z)$.
Note that $\log (z)$ is an analytic branch of $\log z$ in $D^{*}=D_{-\pi}^{*}$.

Remark

The question of whether or not there is an analytic branch of a multiple-valued function $f(z)$ such as $\log z$ in a given domain D is very subtle. We saw by example, that $\log z$ can have an analytic branch in a domain D by cleverly pasting together multiple \mathcal{L}_{τ} 's.

