Theorem (Fundamental Theorem for Contour Integrals)

Suppose that f is continuous on a domain D and that F is an antiderivative for f in D. (That is, F is analytic in D and F'(z) = f(z) for all $z \in D$.) Let Γ be a contour in D with initial point ω_0 and terminal point ω_1 . Then

$$\int_{\Gamma} f(z) \, dz = F(\omega_1) - F(\omega_0).$$

Theorem (Antiderivatives)

Suppose that f is continuous on a domain D. Then the following are equivalent.

- f has an antiderivative on D.
- **2** For every closed contour Γ in D we have

$$\int_{\Gamma}f(z)\,dz=0.$$

3 If Γ_0 and Γ_1 are contours in D with the same initial and terminal points, then

$$\int_{\Gamma_0} f(z) \, dz = \int_{\Gamma_1} f(z) \, dz.$$

In other words, contour integrals of f in D are path independent.

Deformations or Homotopies

Definition

Suppose that Γ_0 and Γ_1 are closed contours in a domain D. Then Γ_0 can be continuously deformed into Γ_1 in D if there is a continuous function $z : [0, 1] \times [0, 1] \rightarrow D$ such that

- for each s ∈ (0,1), t → z(s, t) is an admissible parameterization of a closed contour Γ_s in D,
- **2** $t \mapsto z(0, t)$ is an admissible parameterization of Γ_0 , and
- **3** $t \mapsto z(1, t)$ is an admissible parameterization of Γ_1 .

Note that for any $s \in [0, 1]$, we allow for Γ_s to be a point with parameterization given by the constant function.

Remark

In the text, the authors call a closed contour a loop. In many texts, one says Γ_0 and Γ_1 are homotopic if one can be continuously deformed into the other.