```
m42w06 Homework:1 Due Date: 11/1/06
```

Metric spaces are a useful concept often used to bridge the gap between geometry and topology.
A metric space consists of a set X and a function $d: X \times X \rightarrow \mathbb{R}^{1}$ such that ${ }^{1}$

- $d(x, y) \geq 0$ with $d(x, y)=0$ if and only if $x=y$
- $d(x, y)=d(y, x)$
- $d(x, y)+d(y, z) \geq d(x, z)$.

The function d is refered to as a distance function or metric on X.
Problem 1A: [20 pts]
(a) Show that the \mathbb{R}^{3} together with the function

$$
d(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\left(x_{3}-y_{3}\right)^{2}}
$$

is a metric space. (Try to argue geometrically rather than computationally).
A subset $X \subset \mathbb{R}^{3}$ is C^{1} path-connected if for every pair of points $x, y \in X^{1}$, there is a C^{1} curve $\gamma:[a, b] \rightarrow \mathbb{R}^{3}$ such that γ lies entirely in X and $\gamma(a)=x, \gamma(b)=y$. In other words, every pair of points can be connected by a C^{1} curve.

For such a subset X, we can define a new function

$$
d_{X}(x, y)=\min \left\{\int_{a}^{b}\|\dot{\gamma}(t)\| d t: \gamma \text { is a } C^{1} \text { curve into } X \text { with } \gamma(a)=x, \gamma(b)=y .\right\}
$$

(b) Show that $\left(X, d_{X}\right)$ is a metric space.

When $X=\left\{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}$, i.e. the unit sphere centered at $(0,0,0)$, we shall see later that the length minimizing curves are the great circles (intersections of the sphere with planes passing through the origin)
(c) Use the fact that d_{X} is a metric space to prove the following result:
"The sum of any two angles formed at the vertex of a triangular pyramid is greater than the third angle."
(Hint: think about lengths of arcs of circles in terms of angles.)

[^0]Def: Given a point p contained in a subset X of $\mathbb{R}^{2}\left(\right.$ or $\left.\mathbb{R}^{3}\right)$, the tangent space to X at p, denoted $T_{p} X$, is the collection of all pairs $\{(p, v)\}$ such that there exists a C^{1} curve $\gamma:(-\epsilon, \epsilon) \rightarrow \mathbb{R}^{2}$ (or \mathbb{R}^{3}) with its image entirely in X such that

- $\gamma(0)=p$
- $\gamma^{\prime}(0)=v$.

In other words (p, v) is in $T_{p} X$ if there is a C^{1} curve in X passing through p with tangent vector v at p. Note: with this definition, the curve must lie inside X defined on both sides of p.

The tangent space is defined in this slightly strange way to emphasize that the tangent vectors start at p, whereas the vectors v alone just represent a magnitude and direction and do not encode a position in space.

To help visualization, we often think about the embedded tangent space, denoted $\mathcal{E}_{p} X$ which consists of all points $\{p+v\}$ where $(p, v) \in T_{p} X$, i.e. the endpoints of all vectors v starting at p.

Problem 1B: [20 pts]
(a) Show that if $(p, v) \in T_{p} X$ and $\lambda \in \mathbb{R}$ then $(p, \lambda v) \in T_{p} X$.
(Note this means that the embedded tangent space is the union of $\{p\}$ with lines through p, although there maybe zero or infinitely many.)

Describe the embedded tangent spaces of the following subsets X at the given points p. Briefly justify your answers.
(b) $X=\left\{x^{2}+y^{2} \leq 1\right\} \subset \mathbb{R}^{2}, p=(1,0)$.
(c) $X=\left\{x^{2}+y^{2} \leq 1\right\} \subset \mathbb{R}^{2}, p=(0,0)$.
(d) $X=\{\max |x|,|y|=1\} \subset \mathbb{R}^{2}, p=(1,1)$.
(e) X is the image of the "figure-eight" curve $\gamma(t)=(\sin (2 t), \sin t), p=(0,0)$.
(f) $X=\left\{z=x^{2}+y^{2}\right\} \subset \mathbb{R}^{3}, p=(1,0,1)$.

[^0]: ${ }^{1}$ The Cartesan product of sets $X \times Y$ consists of all pairs (x, y) such that $x \in X$ and $y \in Y$.
 ${ }^{1}$ The notation $x \in X$ mean x is an element of the set X.

