One way to build functions is by composition, i.e. plugging one function into another. If $f(x)$ and $g(x)$ are functions, then for whatever x for which $g(x)$ is in the domain of $f(x)$, then we can write

$$
(f \circ g)(x)=f(g(x))
$$

For example, if $f(x)=\frac{x+1}{3 x-2}$ and $g(x)=\sqrt{x}$, then

$$
(f \circ g)(x)=\frac{\sqrt{x}+1}{3 \sqrt{x}-2} \quad\left(\text { for } x \neq \pm(2 / 3)^{2}\right)
$$

and

$$
(g \circ f)(x)=\sqrt{\frac{x+1}{3 x-2}} \quad\left(\text { whenever } \frac{x+1}{3 x-2} \geq 0\right)
$$

1. Let $f(x)=\frac{x+1}{3 x-2}$ and $g(x)=\frac{1}{x}$.
(a) Calculate $(f \circ g)(x)$ and $(g \circ f)(x)$.
(b) What is the domain of $(g \circ f)(x)$?
[hint: Careful! The domain of $(g \circ f)(x)$ is the set of x 's which satisfy both (1) $f(x)$ exists, and $(2)(g \circ f)(x)$ exists.]
2. Let $f=\frac{x+1}{3 x-2}$
(a) Calculate $f^{-1}(x)$.
(b) Check your answer to \#1 by explicitly calculating $\left(f \circ f^{-1}\right)(x)$ and $\left(f \circ f^{-1}\right)(x)$ (you should get x both times).
(c) If $(f \circ g)(x)=x+2$, what is $g(x)$?
[hint: since $(f \circ g)(x)=f(g(x))=x+2$, we know

$$
g(x)=f^{-1}\left(f(g(x))=f^{-1}(x+2) .\right]
$$

Answers:

1. (a) $(f \circ g)(x)=\frac{\frac{1}{x}+1}{3 \frac{1}{x}-2},(g \circ f)(x)=\frac{3 x-2}{x+1}$
(b) All $x \neq 2 / 3,-1$, i.e. $(-\infty,-1) \cup(-1,2 / 3) \cup(2 / 3, \infty)$
2. (a) $f^{-1}(x)=\frac{2 x+1}{3 x-1}$
(b) (calculation)
(c) $g(x)=\frac{2 x+5}{3 x+5}$
