Worksheet - The tangent line problem
 Math 3 - Jan 19, 2012

We've been building towards studying rates of change, e.g.
rate at which position changes versus time (= velocity); rate at which birthrate changes versus average household income; rate at which profit margin changes versus production volume.

In general, the instantaneous rate of change of a function $f(x)$ versus x at a point a is given by the limit of the difference quotient:
inst. rate of change $=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$.

Another word for the instantaneous rate of change of a function $f(x)$ at a point a is the derivative of $f(x)$ at $x=a$, written $f^{\prime}(a)$. So

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

The derivative also has a geometric interpretation:

$$
f^{\prime}(a)=\text { slope of the line tangent to } y=f(x) \text { at } x=a .
$$

Example 1: Below is a graph of the function $f(x)=\sqrt{1-x^{2}}$ (the half circle with radius 1). Without calculating any limits, what is
(a) $f^{\prime}(0)$?
(b) $f^{\prime}\left(\frac{\sqrt{2}}{2}\right)$?
(c) $f^{\prime}\left(-\frac{\sqrt{2}}{2}\right)$?
[hint: for (b) and (c), draw a line from the origin to the point in question. What angle does that make with the x-axis? What is the slope of that line? For a circle, the line tangent at a point is perpendicular to the ray from the center to the point.]

Once you have the slope, it's pretty easy to write down the equations for the tangent line using point-slope form:

$$
y=m\left(x-x_{0}\right)+y_{0} \quad \text { becomes } \quad y=f^{\prime}(a)(x-a)+f(a) .
$$

Example 2: What is the equation for the line tangent to $f(x)=\sqrt{1-x^{2}}$ at
(a) $x=0$?
(b) $x=\frac{\sqrt{2}}{2}$?
(c) $x=-\frac{\sqrt{2}}{2}$?

Check your answers by first sketching the lines you wrote down in (a)-(c), and then sketching the function $f(x)=\sqrt{1-x^{2}}$ on the axes to the right.

Example 3: For reference, the graph of $f(x)=\sin (x)$ is:

(a) The function $\sin (x)$ has infinitely many points $x=a$ where $f^{\prime}(a)=0$. What are they?
(b) There are exactly two horizontal lines which are tangent to $\sin (x)$. What are they?
(c) [Bonus] Can you think of a function which has infinitely many points where $f^{\prime}(a)=0$, not just anywhere, but between $x=0$ and $x=\pi$? [hint: think back to the day we did limits. There is some function $g(x)$ which we could plug into $\sin (x)$ which will make $\sin (g(x))$ a good answer to this question.]

Calculating derivative using limits

Recall from last Friday that we have a few tricks for calculating limits $\lim _{x \rightarrow a} g(x)$:

1. Plugging in: If $g(x)$ is continuous, and $g(a)$ is defined, then $\lim _{x \rightarrow a} g(x)=g(a)$.

For example, $\quad \lim _{x \rightarrow 2} \frac{x+1}{x-3}=\square$
2. Factor and cancel: If $g(x)$ is rational, and $g(a)$ is not defined, but a is a root of the numerator and denominator, then factor and cancel:
For example,

$$
\lim _{x \rightarrow 2} \frac{x+1}{x-2} \quad \text { is undefined }
$$

but
$\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4}=$ \square
3. Expand and cancel: It's like spring cleaning - make a mess, and then clean up!.

For example, since $(x+2)^{3}=x^{3}+6 x^{2}+12 x+8$,
$\lim _{x \rightarrow 0} \frac{x}{(x+2)^{3}-8}=$ \square
4. Common denominators: If you have a sum or difference of fractions, find a common denominator and see what happens.
For example,
$\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{x(x+1)}\right)=$

5. Multiply top and bottom by the conjugate: If you have a difference of square roots (like $\sqrt{a}-\sqrt{b}$), you can multiply and divide by the conjugate, $\sqrt{a}+\sqrt{b}$. This is useful because

$$
(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})=(\sqrt{a})^{2}-(\sqrt{b})^{2}=a-b
$$

For example, try multiplying by $\frac{\sqrt{x+4}+2}{\sqrt{x+4}+2}:($ notice $2=\sqrt{4})$
$\lim _{x \rightarrow 0} \frac{x}{\sqrt{x+4}-2}=$ \square

Now that we have these tools, let's calculate some derivatives!
(A) Use the limit definitions the derivative of $f(x)=x^{2}$ at $x=1$:

$$
\begin{aligned}
f^{\prime}(1) & =\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(1+h)^{2}-(1)^{2}}{h} \\
& =
\end{aligned}
$$

\square
(B) Use the limit definitions the derivative of $f(x)=x^{3}$ at $x=-2$:

$$
\begin{aligned}
f^{\prime}(-2) & =\lim _{h \rightarrow 0} \frac{f(-2+h)-f(-2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(-2+h)^{3}-(-2)^{3}}{h} \\
& =
\end{aligned}
$$

careful! $(-2)^{3}=-8$, so $-(-2)^{3}=8$

(C) Use the limit definitions the derivative of $f(x)=\frac{1}{x}$ at $x=3$:

$$
\begin{aligned}
f^{\prime}(3) & =\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h} \\
& =
\end{aligned}
$$

\square
(D) Use the limit definitions the derivative of $f(x)=\sqrt{x}$ at $x=5$:

$$
\begin{aligned}
f^{\prime}(3) & =\lim _{h \rightarrow 0} \frac{f(5+h)-f(5)}{h} \\
& =
\end{aligned}
$$

$$
=\square
$$

Back to tangent line equations:
Use your answers to A-D on the previous two pages to calculate the lines tangent to
(a) $f(x)=x^{2}$ at $x=1$
(b) $f(x)=x^{3}$ at $x=-2$
(c) $f(x)=\frac{1}{x}$ at $x=3$
(d) $f(x)=\sqrt{x}$ at $x=5$

Check your answers by sketching the lines from (a)-(d) on onto the appropriate graphs below:

Answers: $q: y=2 x-1, \quad b: y=12 x+16, \quad c:-\frac{1}{9} x+\frac{2}{3}, \quad d: \frac{1}{2 \sqrt{5}} x+\frac{\sqrt{5}}{2}$

When can we take derivatives?

Not all functions have derivatives at all places. Before calculating $f^{\prime}(a)$, first ask ...

1. Is $f(x)$ defined at $x=a$?

For example, even if it looks like you could draw a tangent line, if there's a hole, $f^{\prime}(a)$ does not exist!
(It's tempting to say $f^{\prime}(a)$ exists here in part because $f(x)$ has a continuous extension at a.)

2. Is $f(x)$ continuous at $x=a$?

For example, even if it looks like you could draw a tangent line, if there's a jump, $f^{\prime}(a)$ does not exist!
(Try drawing just one line that is tangent to that isolated point. It's tempting to say $f^{\prime}(a)$ exists here in part because $f(x)$ has a removable discontinuity at a.)

Again, even if the slope looks the same from the left and from the right, if there's a discontinuity, $f^{\prime}(a)$ does not exist!

3. Is there a "corner" at $x=a$?

Next we'll explore how to find these algebraically, but if there's a sharp corner at $x=a$, then $f^{\prime}(a)$ does not exist!
(Try drawing just one line that is tangent to that corner)

What's wrong with corners?

Let $f(x)= \begin{cases}x^{2} & x<2, \\ x+2 & x>2 .\end{cases}$
(a) Verify that $f(x)$ is continuous at $x=2$.
(b) Sketch a graph of $f(x)$.
(c) Estimate, and then calculate the right sided derivative.
(i) Estimate:

a	3	2.5	2.1	2
$f(a)$				

h	$f(2+h)-f(2)$	$\frac{f(2+h)-f(2)}{h}$
1		
$1 / 2$		
$1 / 10$		

(ii) Explain why $\lim _{h \rightarrow 0^{+}} \frac{f(2+h)-f(2)}{h}=\lim _{h \rightarrow 0^{-}} \frac{(2+2+h)-(2+2)}{h}$.
(iii) Calculate $\lim _{h \rightarrow 0^{+}} \frac{f(2+h)-f(2)}{h}$.
(d) Estimate, and then calculate the left sided derivative. (OK to use a calculator for (i)) (i) Estimate:

a	1	1.5	1.9	2
$f(a)$				

h	$f(2+h)-f(2)$	$\frac{f(2+h)-f(2)}{h}$
-1		
$-1 / 2$		
$-1 / 10$		

(ii) Explain why $\lim _{h \rightarrow 0^{-}} \frac{f(2+h)-f(2)}{h}=\lim _{h \rightarrow 0^{-}} \frac{(2+h)^{2}-(2)^{2}}{h}$.
(iii) Calculate $\lim _{h \rightarrow 0^{-}} \frac{f(2+h)-f(2)}{h}$.
(e) Compare your answers to (b) and (c), and explain why $\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}$ does not exist. Explain why $f^{\prime}(2)$ does not exist.
(f) Sketch graphs of the following functions and identify points where each function is not differentiable:
$f(x)=|x| \quad g(x)=|x-2| \quad h(x)=|4-|x-2|| \quad \psi(x)=\frac{|x|}{x} \quad \phi(x)= \begin{cases}x^{2} & x<0, \\ x^{4} & x>0 .\end{cases}$
[hint: for $h(x)$, start by plotting some points, and then find points where $x-2$ goes from positive to negative, and where $4-|x-2|$ goes from positive to negative.]

Answers: a: check each requirement, c (iii): 1, d (iii): 4, e: do the two sides meet? $f(x): x=0, \quad g(x): x=2, \quad h(x): x=-2,2,6, \quad \psi(x): x=0, \quad \phi(x):$ no x !

