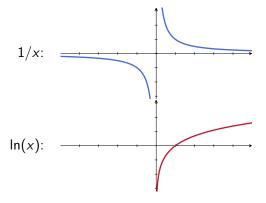
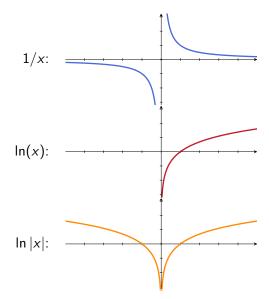
Exponential Growth and Decay

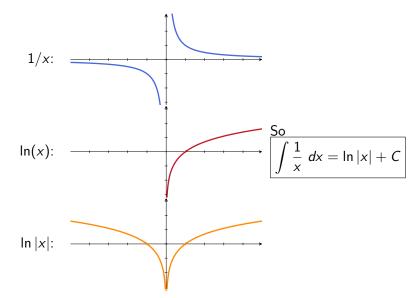
Remember: Antiderivative of 1/x



Remember: Antiderivative of 1/x



Remember: Antiderivative of 1/x



The plan:

- 1. Put it into math, i.e. Write down an initial value problem.
- 1'. Look at slope fields to make sure the IVP makes sense.
- 2. Find the general solution to the IVP.
- 3. Plug in the points and find the particular solution.
- **4**. Calculate the value of the solution when t = 24.

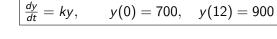
The plan:

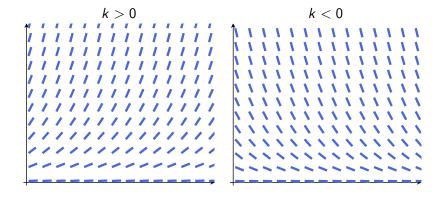
- 1. Put it into math, i.e. Write down an initial value problem.
- 1'. Look at slope fields to make sure the IVP makes sense.
- 2. Find the general solution to the IVP.
- 3. Plug in the points and find the particular solution.
- 4. Calculate the value of the solution when t = 24.

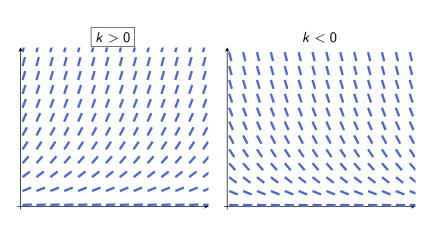
Step 1: Put into math. Initial value problem:

$$\frac{dy}{dt} = ky,$$
 $y(0) = 700,$ $y(12) = 900$

$$\left| \frac{dy}{dt} = ky, \quad y(0) = 700, \quad y(12) = 900 \right|$$







 $\frac{dy}{dt} = ky,$ y(0) = 700, y(12) = 900

 $\frac{dy}{dt} = ky,$ y(0) = 700, y(12) = 900

$$\frac{dy}{dt} = ky,$$
 $y(0) = 700,$ $y(12) = 900$

$$\int \frac{1}{y} dy = \int k \ dt$$

$$\frac{dy}{dt} = ky,$$
 $y(0) = 700,$ $y(12) = 900$

$$\int \frac{1}{y} dy = \int k \ dt$$

LHS:
$$\int \frac{1}{y} dy = \ln |y| + c_1$$

$$\frac{dy}{dt} = ky,$$
 $y(0) = 700,$ $y(12) = 900$

$$\int \frac{1}{y} dy = \int k \ dt$$

LHS:
$$\int \frac{1}{y} dy = \ln |y| + c_1$$

RHS: $\int k dt = kt + c_2$

$$\frac{dy}{dt} = ky,$$
 $y(0) = 700,$ $y(12) = 900$

$$\int \frac{1}{y} dy = \int k \ dt$$

LHS:
$$\int \frac{1}{v} dy = \ln |y| + c_1$$

RHS:
$$\int k \ dt = kt + c_2$$

Putting it together:

$$\ln |y| = kt + C$$

$$\frac{dy}{dt} = ky,$$
 $y(0) = 700,$ $y(12) = 900$

$$\int \frac{1}{y} dy = \int k \ dt$$

LHS: $\int \frac{1}{y} dy = \ln |y| + c_1$

RHS: $\int k \ dt = kt + c_2$

Putting it together:

$$\ln |y| = kt + C \implies |y| = e^{kt+C} = e^{C} * e^{kt}$$

$$\frac{dy}{dt} = ky, \qquad y(0) = 700, \quad y(12) = 900$$

$$\int \frac{1}{y} dy = \int k \ dt$$

LHS: $\int \frac{1}{v} dy = \ln |y| + c_1$

RHS: $\int k \ dt = kt + c_2$

Putting it together:

$$\ln |y| = kt + C \implies |y| = e^{kt+C} = e^C * e^{kt}$$

$$\Rightarrow y = \pm e^{C} * e^{kt} = Ae^{kt}.$$

$$\frac{dy}{dt} = ky,$$
 $y(0) = 700,$ $y(12) = 900$

$$\int \frac{1}{y} dy = \int k \ dt$$

LHS: $\int \frac{1}{y} dy = \ln |y| + c_1$

RHS: $\int k \ dt = kt + c_2$

Putting it together:

$$\ln |y| = kt + C \implies |y| = e^{kt+C} = e^C * e^{kt}$$
$$\implies y = \pm e^C * e^{kt} = Ae^{kt}.$$

General solution: $y = Ae^{kt}$

$$\frac{dy}{dt} = ky, y(0) = 700, y(12) = 900$$
General solution:
$$y = Ae^{kt}$$

$$\frac{dy}{dt} = ky, y(0) = 700, y(12) = 900$$
General solution:
$$y = Ae^{kt}$$

$$\frac{dy}{dt} = ky, y(0) = 700, y(12) = 900$$
General solution:
$$y = Ae^{kt}$$

$$700 = y(0) = Ae^0 = A$$
, so $y = 700e^{kt}$

$$\frac{dy}{dt} = ky, y(0) = 700, y(12) = 900$$
General solution:
$$y = Ae^{kt}$$

$$700 = v(0) = Ae^0 = A$$
, so $v = 700e^{kt}$

$$900 = 700e^{12k} \implies 12k = \ln(900/700) = \ln(9/7)$$
$$\implies k = \frac{1}{12}\ln(9/7) \approx \boxed{0.021}$$

$$\frac{dy}{dt} = ky, y(0) = 700, y(12) = 900$$
General solution:
$$y = Ae^{kt}$$

$$700 = y(0) = Ae^0 = A$$
, so $y = 700e^{kt}$

$$900 = 700e^{12k} \implies 12k = \ln(900/700) = \ln(9/7)$$
$$\implies k = \frac{1}{12}\ln(9/7) \approx \boxed{0.021}$$

Particular solution:
$$y = 700e^{t*\frac{1}{12}\ln(9/7)}$$

Particular solution:
$$y = 700e^{t*\frac{1}{12}\ln(9/7)}$$

$$\boxed{ \frac{dy}{dt} = ky, \qquad y(0) = 700, \quad y(12) = 900 }$$
 General solution:
$$\boxed{ y = Ae^{kt} }$$

$$700 = y(0) = Ae^0 = A$$
, so $y = 700e^{kt}$

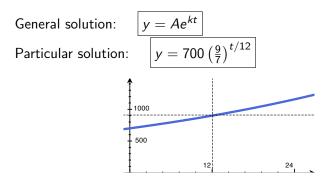
$$900 = 700e^{12k} \implies 12k = \ln(900/700) = \ln(9/7)$$
$$\implies k = \frac{1}{12}\ln(9/7) \approx \boxed{0.021}$$

Particular solution:
$$y = 700e^{t*\frac{1}{12}\ln(9/7)}$$

Note: another way to write this is

$$y = 700e^{t*\frac{1}{12}\ln(9/7)} = 700\left(e^{\ln(9/7)}\right)^{t/12} = 700\left(\frac{9}{7}\right)^{t/12}$$

General solution: $y = Ae^{kt}$ Particular solution: $y = 700 \left(\frac{9}{7}\right)^{t/12}$



General solution:
$$y = Ae^{kt}$$

Particular solution: $y = 700 \left(\frac{9}{7}\right)^{t/12}$

$$y(24) = 700 \left(\frac{9}{7}\right)^{24/12} = 700 \left(\frac{9}{7}\right)^2 = 8100/7 \approx 1157.14$$

Example 2: Objects heat or cool at a rate proportional to the difference between their temperature and the ambient temperature. Suppose a pie is pulled out of the oven (heated to $370^{\circ}F$), and put into a room that's $70^{\circ}F$. After 10 minutes, the center of the pie is $340^{\circ}F$.

(a) How hot is the pie after 20 minutes?(b) How long will it take for the center of the pie to cool to 100°F?

Example 2: Objects heat or cool at a rate proportional to the difference between their temperature and the ambient temperature. Suppose a pie is pulled out of the oven (heated to 370°F), and put into a room that's 70°F. After 10 minutes, the center of the pie is 340°F.

- (a) How hot is the pie after 20 minutes?
- (b) How long will it take for the center of the pie to cool to $100^{\circ}F$?

The plan:

- 1. Put it into math, i.e. Write down an initial value problem.
- 2. Find the general solution to the IVP.
- 3. Plug in the points and find the particular solution.
- **4**. Calculate the value of the solution when t = 20.
- 5. Solve for t when the solution is equal to 100.

Example 2: Objects heat or cool at a rate proportional to the difference between their temperature and the ambient temperature. Suppose a pie is pulled out of the oven (heated to 370° F), and put into a room that's 70° F. After 10 minutes, the center of the pie is 340° F.

- (a) How hot is the pie after 20 minutes?
- (b) How long will it take for the center of the pie to cool to 100°F?

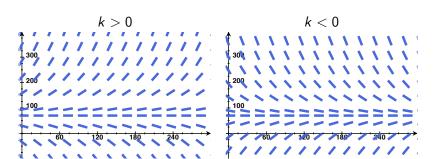
The plan:

- 1. Put it into math, i.e. Write down an initial value problem.
- 2. Find the general solution to the IVP.
- 3. Plug in the points and find the particular solution.
- **4**. Calculate the value of the solution when t = 20.
- 5. Solve for t when the solution is equal to 100.

Step 1: Put into math. Initial value problem:

$$\frac{dy}{dt} = k(y - 70),$$
 $y(0) = 370,$ $y(10) = 340$

IVP: $\frac{dy}{dt} = k(y - 70),$	y(0) = 370,	y(10) = 340



IVP:
$$\frac{dy}{dt} = k(y - 70), \quad y(0) = 370, \quad y(10) = 340$$

| IVP:
$$\frac{dy}{dt} = k(y - 70), \quad y(0) = 370, \quad y(10) = 340$$

$$\int \frac{1}{v - 70} dy = \int k \ dt$$

VP:
$$\frac{dy}{dt} = k(y - 70), \quad y(0) = 370, \quad y(10) = 340$$

$$\int \frac{1}{y - 70} dy = \int k \ dt$$

LHS:
$$\int \frac{1}{y-70} dy = \ln|y-70| + c_1$$
,

VP:
$$\frac{dy}{dt} = k(y - 70), \quad y(0) = 370, \quad y(10) = 340$$

$$\int \frac{1}{y - 70} dy = \int k \ dt$$

LHS:
$$\int \frac{1}{y-70} dy = \ln|y-70| + c_1$$
,

RHS:
$$\int kdt = kt + c_2$$

| IVP:
$$\frac{dy}{dt} = k(y - 70), \quad y(0) = 370, \quad y(10) = 340$$

$$\int \frac{1}{v - 70} dy = \int k \ dt$$

LHS:
$$\int \frac{1}{v-70} dy = \ln|y-70| + c_1$$
,

RHS:
$$\int kdt = kt + c_2$$

Putting it together:
$$\ln |y - 70| = kt + c$$
 (where $c = c_2 - c_1$).

IVP:
$$\frac{dy}{dt} = k(y - 70), \quad y(0) = 370, \quad y(10) = 340$$

$$\int \frac{1}{y - 70} dy = \int k \ dt$$

LHS:
$$\int \frac{1}{v-70} dy = \ln|y-70| + c_1$$
,

RHS:
$$\int kdt = kt + c_2$$

Putting it together: $\ln |y - 70| = kt + c$ (where $c = c_2 - c_1$). So

$$y - 70 = \pm e^{kt+c}$$

IVP:
$$\frac{dy}{dt} = k(y - 70), \quad y(0) = 370, \quad y(10) = 340$$

$$\int \frac{1}{y - 70} dy = \int k \ dt$$

LHS:
$$\int \frac{1}{y-70} dy = \ln|y-70| + c_1$$
,

RHS:
$$\int kdt = kt + c_2$$

Putting it together:
$$\ln |y - 70| = kt + c$$
 (where $c = c_2 - c_1$). So

$$y-70=\pm e^{kt+c}=\pm e^c*e^{kt}=Ae^{kt}$$
 where $A=\pm e^c$,

IVP:
$$\frac{dy}{dt} = k(y - 70), \quad y(0) = 370, \quad y(10) = 340$$

$$\int \frac{1}{y - 70} dy = \int k \ dt$$

LHS:
$$\int \frac{1}{v-70} dy = \ln|y-70| + c_1$$
,

RHS:
$$\int kdt = kt + c_2$$

Putting it together:
$$\ln |y - 70| = kt + c$$
 (where $c = c_2 - c_1$). So

$$y - 70 = \pm e^{kt+c} = \pm e^c * e^{kt} = Ae^{kt}$$
 where $A = \pm e^c$,

and so

$$y = Ae^{kt} + 70$$

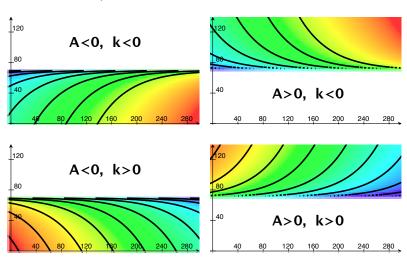
IVP:
$$\frac{dy}{dt} = k(y - 70), \quad y(0) = 370, \quad y(10) = 340$$

General solution: $y = Ae^{kt} + 70$

What do we expect from k and A?

IVP:
$$\frac{dy}{dt} = k(y - 70), \quad y(0) = 370, \quad y(10) = 340$$
General solution: $y = Ae^{kt} + 70$

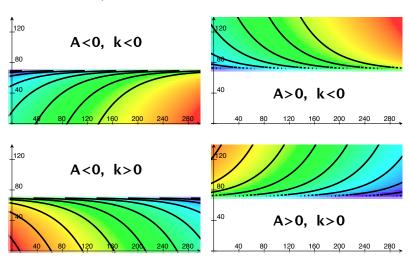
What do we expect from k and A?



IVP:
$$\frac{dy}{dt} = k(y - 70), \qquad y(0) = 370, \quad y(10) = 340$$

General solution: $y = Ae^{kt} + 70$

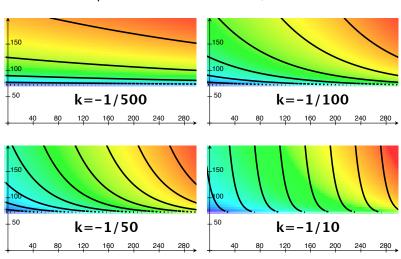
What do we expect from k and A? A > 0, k < 0



IVP:
$$\frac{dy}{dt} = k(y - 70), \quad y(0) = 370, \quad y(10) = 340$$

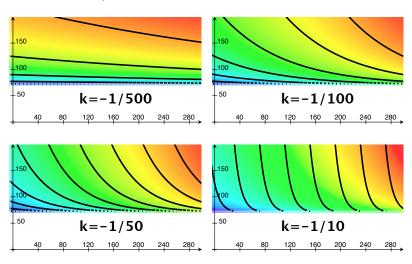
General solution: $y = Ae^{kt} + 70$

What do we expect from k and A? A > 0, k < 0



IVP:
$$\frac{dy}{dt} = k(y - 70),$$
 $y(0) = 370,$ $y(10) = 340$

General solution: $y = Ae^{kt} + 70$



IVP:
$$\frac{dy}{dt} = k(y - 70),$$
 $y(0) = 370,$ $y(10) = 340$

General solution: $y = Ae^{kt} + 70$

Step 3: Plug in points and find particular solution

IVP:
$$\frac{dy}{dt} = k(y - 70),$$
 $y(0) = 370,$ $y(10) = 340$

General solution: $y = Ae^{kt} + 70$

Step 3: Plug in points and find particular solution

$$370 = y(0) = Ae^0 + 70$$
, so $A = 300$

IVP:
$$\frac{dy}{dt} = k(y - 70),$$
 $y(0) = 370,$ $y(10) = 340$

General solution: $y = Ae^{kt} + 70$

Step 3: Plug in points and find particular solution

$$370 = y(0) = Ae^0 + 70,$$
 so $A = 300$

$$310 - y(0) = Ae + 10$$
, $30 - A = 300$

so $k = \frac{1}{10} \ln \left(\frac{350 - 70}{300} \right) = \ln(.9)/10 \approx -0.0105$.

 $340 = y(10) = 300e^{k*10} + 70$

so
$$k = \frac{10}{10} \ln \left(\frac{100}{300} \right) = \frac{\ln(.9)/10 \approx -0.0105}{\ln(.9)/10 \approx -0.0105}$$

IVP:
$$\frac{dy}{dt} = k(y - 70),$$
 $y(0) = 370,$ $y(10) = 340$

General solution: $y = Ae^{kt} + 70$

Step 3: Plug in points and find particular solution

$$370 = y(0) = Ae^0 + 70,$$
 so $A = 300$

$$340 = y(10) = 300e^{k*10} + 70$$

so
$$k = \frac{1}{10} \ln \left(\frac{350 - 70}{300} \right) = \ln(.9)/10 \approx -0.0105$$
.

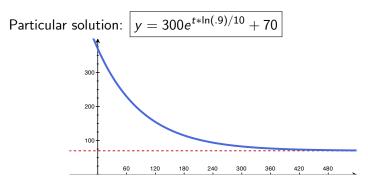
So the particular solution is

$$y = 300e^{t*\ln(.9)/10} + 70$$

(a) How hot is the pie after 20 minutes?(b) How long will it take for the center of the pie to cool to 100°F?

Particular solution: $y = 300e^{t*ln(.9)/10} + 70$

- (a) How hot is the pie after 20 minutes?
- (b) How long will it take for the center of the pie to cool to 100°F?



- (a) How hot is the pie after 20 minutes?
- (b) How long will it take for the center of the pie to cool to 100°F?

Particular solution:
$$y = 300e^{t*ln(.9)/10} + 70$$

Answers:

(a)
$$y(20) = 300e^{20*\ln(.9)/10} + 70 = \boxed{313}$$

- (a) How hot is the pie after 20 minutes?
- (b) How long will it take for the center of the pie to cool to $100^{\circ}F$?

Particular solution:
$$y = 300e^{t*\ln(.9)/10} + 70$$

Answers:

(a)
$$y(20) = 300e^{20*\ln(.9)/10} + 70 = \boxed{313}$$

(b)
$$100 = 300e^{t*\ln(.9)/10} + 70$$

So
$$e^{t*\ln(.9)/10} = 30/300 = 1/10$$
,

- (a) How hot is the pie after 20 minutes?
- (b) How long will it take for the center of the pie to cool to $100^{\circ}F$?

Particular solution:
$$y = 300e^{t*ln(.9)/10} + 70$$

Answers:

(a)
$$y(20) = 300e^{20*\ln(.9)/10} + 70 = \boxed{313}$$

(b)
$$100 = 300e^{t*\ln(.9)/10} + 70$$

So
$$e^{t*\ln(.9)/10} = 30/300 = 1/10$$
, and so 10

$$t = \frac{10}{\ln(.9)}\ln(.1) \approx \boxed{218.543}$$

"Half-life": The time it takes for an amount of stuff to halve in size.

"Half-life": The time it takes for an amount of stuff to halve in size.

IVP:
$$\frac{dy}{dt} = ky$$
,

"Half-life": The time it takes for an amount of stuff to halve in size.

IVP:
$$\frac{dy}{dt} = ky$$
, $y(0) = 10$, $y(24.1) = \frac{1}{2}10$.

"Half-life": The time it takes for an amount of stuff to halve in size.

IVP:
$$\frac{dy}{dt} = ky$$
, $y(0) = 10$, $y(24.1) = \frac{1}{2}10$.

Question: What is t when y(t) = 1?

"Half-life": The time it takes for an amount of stuff to halve in size.

IVP:
$$\frac{dy}{dt} = ky$$
, $y(0) = 10$, $y(24.1) = \frac{1}{2}10$.

Question: What is t when y(t) = 1?

To do:

Separate to get general solution; Plug in points to get specific solution; Solve y(t)=1 for t

$$\frac{dy}{dt} = ky(y-C), \qquad y \ge 0$$

$$\frac{dy}{dt} = ky(y - C), \qquad y \ge 0$$

"A population of rabbits will grow at a rate proportional to the product of the number y of rabbits present and the difference between the population size and the carrying capacity C of their environment."

$$\frac{dy}{dt}=ky(y-C), \qquad y\geq 0$$

"A population of rabbits will grow at a rate proportional to the product of the number y of rabbits present and the difference between the population size and the carrying capacity C of their environment."

$$\frac{dy}{dt}=ky(y-C), \qquad y\geq 0$$

(1)
$$y < C$$
:

"A population of rabbits will grow at a rate proportional to the product of the number y of rabbits present and the difference between the population size and the carrying capacity C of their environment."

$$\frac{dy}{dt} = ky(y-C), \qquad y \ge 0$$

What is k? Three cases:

(1) y < C: We expect the population to grow, so $\frac{dy}{dt} > 0$. But y * (y - C) < 0, so it must be that k is negative!

"A population of rabbits will grow at a rate proportional to the product of the number y of rabbits present and the difference between the population size and the carrying capacity C of their environment."

$$\frac{dy}{dt} = ky(y-C), \qquad y \ge 0$$

- (1) y < C: We expect the population to grow, so $\frac{dy}{dt} > 0$. But y * (y C) < 0, so it must be that k is negative!
- (2) y > C:

"A population of rabbits will grow at a rate proportional to the product of the number y of rabbits present and the difference between the population size and the carrying capacity C of their environment."

$$\frac{dy}{dt} = ky(y-C), \qquad y \ge 0$$

- (1) y < C: We expect the population to grow, so $\frac{dy}{dt} > 0$. But y * (y C) < 0, so it must be that k is negative!
- (2) y > C: We expect the population to shrink, so $\frac{dy}{dt} < 0$. But y * (y C) > 0, so it must be that k is still negative!

"A population of rabbits will grow at a rate proportional to the product of the number y of rabbits present and the difference between the population size and the carrying capacity C of their environment."

$$\frac{dy}{dt} = ky(y-C), \qquad y \ge 0$$

- (1) y < C: We expect the population to grow, so $\frac{dy}{dt} > 0$. But y * (y C) < 0, so it must be that k is negative!
- (2) y > C: We expect the population to shrink, so $\frac{dy}{dt} < 0$. But y * (y C) > 0, so it must be that k is still negative!
- (3) y = 0 or y = C: Either way, we expect there to be no growth or decay, so $\frac{dy}{dt} = 0$.

"A population of rabbits will grow at a rate proportional to the product of the number y of rabbits present and the difference between the population size and the carrying capacity \mathcal{C} of their environment."

$$\frac{dy}{dt} = ky(y-C), \qquad y \ge 0 \qquad k < 0$$

- (1) y < C: We expect the population to grow, so $\frac{dy}{dt} > 0$. But y * (y C) < 0, so it must be that k is negative!
- (2) y > C: We expect the population to shrink, so $\frac{dy}{dt} < 0$. But y * (y C) > 0, so it must be that k is still negative!
- (3) y = 0 or y = C: Either way, we expect there to be no growth or decay, so $\frac{dy}{dt} = 0$.

Separate and integrate:

$$\int \frac{1}{y(y-C)} \ dy = \int k \ dt$$

Separate and integrate:

$$\int \frac{1}{y(y-C)} \ dy = \int k \ dt$$

Goal: Split $\frac{1}{y(y-C)}$ into the sum of two fractions, each of which we know how to integrate: Find a and b so that

$$\frac{1}{y(y-C)} = \frac{a}{y} + \frac{b}{y-C}$$

Separate and integrate:

$$\int \frac{1}{y(y-C)} \ dy = \int k \ dt$$

Goal: Split $\frac{1}{y(y-C)}$ into the sum of two fractions, each of which we know how to integrate: Find a and b so that

$$\frac{1}{y(y-C)} = \frac{a}{y} + \frac{b}{y-C} = \frac{a(y-C) + by}{y(y-C)}$$
 (common denominator)

Separate and integrate:

$$\int \frac{1}{y(y-C)} dy = \int k dt$$

Goal: Split $\frac{1}{y(y-C)}$ into the sum of two fractions, each of which we know how to integrate: Find a and b so that

$$\frac{1}{y(y-C)} = \frac{a}{y} + \frac{b}{y-C} = \frac{a(y-C) + by}{y(y-C)}$$
 (common denominator)
$$= \frac{(a+b)y - aC}{y(y-C)}$$

Solving
$$\frac{dy}{dt} = ky(y - C)$$
:

Separate and integrate:

$$\int \frac{1}{y(y-C)} \ dy = \int k \ dt$$

Goal: Split $\frac{1}{y(y-C)}$ into the sum of two fractions, each of which we know how to integrate: Find a and b so that

$$\frac{1}{y(y-C)} = \frac{a}{y} + \frac{b}{y-C} = \frac{a(y-C) + by}{y(y-C)}$$
 (common denominator)
$$= \frac{(a+b)y - aC}{y(y-C)}$$

$$1 = aC$$
 $0 = a + b$

Solving
$$\frac{dy}{dt} = ky(y - C)$$
:

Separate and integrate:

$$\int \frac{1}{y(y-C)} \ dy = \int k \ dt$$

Goal: Split $\frac{1}{y(y-C)}$ into the sum of two fractions, each of which we know how to integrate: Find a and b so that

$$\frac{1}{y(y-C)} = \frac{a}{y} + \frac{b}{y-C} = \frac{a(y-C) + by}{y(y-C)}$$
 (common denominator)
$$= \frac{(a+b)y - aC}{y(y-C)}$$

$$1 = aC$$
 $0 = a + b$ $\Longrightarrow a = \frac{1}{C}$ and $b = -\frac{1}{C}$

Separate and integrate:

$$\int \frac{1}{y(y-C)} dy = \int k dt$$

Goal: Split $\frac{1}{y(y-C)}$ into the sum of two fractions, each of which we know how to integrate: Find a and b so that

$$\frac{1}{y(y-C)} = \frac{a}{y} + \frac{b}{y-C} = \frac{a(y-C) + by}{y(y-C)}$$
 (common denominator)
$$= \frac{(a+b)y - aC}{y(y-C)}$$

$$1 = aC \qquad 0 = a + b \qquad \Longrightarrow a = \frac{1}{C} \text{ and } b = -\frac{1}{C}$$

$$\frac{1}{V(V - C)} = \frac{\frac{1}{C}}{V} + \frac{-\frac{1}{C}}{V - C}$$

Separate and integrate:

$$\boxed{\frac{1}{C}\int \frac{1}{y} \ dy - \frac{1}{C}\int \frac{1}{y - C} \ dy = \int \frac{1}{y(y - C)} \ dy = \int k \ dt}$$

Goal: Split $\frac{1}{y(y-C)}$ into the sum of two fractions, each of which we know how to integrate: Find a and b so that

$$\frac{1}{y(y-C)} = \frac{a}{y} + \frac{b}{y-C} = \frac{a(y-C) + by}{y(y-C)}$$
 (common denominator)
$$= \frac{(a+b)y - aC}{y(y-C)}$$

$$1 = aC \qquad 0 = a + b \qquad \Longrightarrow a = \frac{1}{C} \text{ and } b = -\frac{1}{C}$$
$$\frac{1}{y(y - C)} = \frac{\frac{1}{C}}{y} + \frac{-\frac{1}{C}}{y - C}$$

Example 4(b):

"Suppose a population of rabbits lives in an environment that will support roughly 100 rabbits at a time. Using the logistic model, how do you expect the rabbit population to grow if you start with 10 rabbits and 6 months later you have 30 rabbits?"

Example 4(b):

"Suppose a population of rabbits lives in an environment that will support roughly 100 rabbits at a time. Using the logistic model, how do you expect the rabbit population to grow if you start with 10 rabbits and 6 months later you have 30 rabbits?"

$$\frac{dy}{dt} = ky(y - 100), \qquad y \ge 0, \quad y(0) = 10, \quad y(0.5) = 30.$$

Example 4(b):

"Suppose a population of rabbits lives in an environment that will support roughly 100 rabbits at a time. Using the logistic model, how do you expect the rabbit population to grow if you start with 10 rabbits and 6 months later you have 30 rabbits?"

$$\frac{dy}{dt} = ky(y - 100), \qquad y \ge 0, \quad y(0) = 10, \quad y(0.5) = 30.$$

Step 1: Calculate

$$\frac{1}{100} \int \frac{1}{v} dy - \frac{1}{100} \int \frac{1}{v - 100} dy = \int k dt$$

Step 2: Solve for y.

Hint: simplify using (I) $A \ln |B| = \ln |B^A|$,

(II)
$$\ln |A| - \ln |B| = \ln |A/B|$$
, and (III) $\ln |A| = B$ means $A = \pm e^B$.

Step 3: Plug in y(0) = 10 and then y(0.5) = 30 to solve for the integration constant and k.