Arc Length

Suppose you want to know what the length of a curve $y=f(x)$ is from the point $(a, f(a))$ to the point $(b, f(b))$:

Suppose you want to know what the length of a curve $y=f(x)$ is from the point $(a, f(a))$ to the point $(b, f(b))$:

Slice!
$\ell=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}(\text { little length })_{i}$

Suppose you want to know what the length of a curve $y=f(x)$ is from the point $(a, f(a))$ to the point $(b, f(b))$:

Slice!
$\ell=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}(\text { little length })_{i}$

Suppose you want to know what the length of a curve $y=f(x)$ is from the point $(a, f(a))$ to the point $(b, f(b))$:

Slice!

$$
\ell=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}(\Delta \ell)_{i}
$$

Suppose you want to know what the length of a curve $y=f(x)$ is from the point $(a, f(a))$ to the point $(b, f(b))$:

Slice!

$$
\ell=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}(\Delta \ell)_{i}=\int_{x=a}^{x=b} d \ell
$$

Let n go to ∞

Suppose you want to know what the length of a curve $y=f(x)$ is from the point $(a, f(a))$ to the point $(b, f(b))$:

Slice!

$$
\ell=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}(\Delta \ell)_{i}=\int_{x=a}^{x=b} d \ell
$$

$$
d \ell=\sqrt{d x^{2}+d y^{2}}
$$

Let n go to ∞

Manipulating into something we can actually calculate...

$$
d \ell=\sqrt{d x^{2}+d y^{2}}
$$

Remember, $y=f(x)$.

Manipulating into something we can actually calculate...

Remember, $y=f(x)$.

$$
d \ell=\sqrt{d x^{2}+d y^{2}}=\sqrt{d x^{2}+d y^{2}} \frac{d x}{d x}
$$

Manipulating into something we can actually calculate...

Remember, $y=f(x)$.

$$
\begin{aligned}
d \ell=\sqrt{d x^{2}+d y^{2}} & =\sqrt{d x^{2}+d y^{2}} \frac{d x}{d x} \\
& =\sqrt{\frac{d x^{2}+d y^{2}}{d x^{2}}} d x
\end{aligned}
$$

Manipulating into something we can actually calculate...

$$
\text { Remember, } y=f(x)
$$

$$
\begin{aligned}
d \ell=\sqrt{d x^{2}+d y^{2}} & =\sqrt{d x^{2}+d y^{2}} \frac{d x}{d x} \\
& =\sqrt{\frac{d x^{2}+d y^{2}}{d x^{2}}} d x=\sqrt{\frac{d x^{2}}{d x^{2}}+\frac{d y^{2}}{d x^{2}}} d x
\end{aligned}
$$

Manipulating into something we can actually calculate...

$$
\text { Remember, } y=f(x)
$$

$$
\begin{aligned}
d \ell=\sqrt{d x^{2}+d y^{2}} & =\sqrt{d x^{2}+d y^{2}} \frac{d x}{d x} \\
& =\sqrt{\frac{d x^{2}+d y^{2}}{d x^{2}}} d x=\sqrt{\frac{d x^{2}}{d x^{2}}+\frac{d y^{2}}{d x^{2}}} d x \\
& =\sqrt{\left(\frac{d x}{d x}\right)^{2}+\left(\frac{d y}{d x}\right)^{2}} d x
\end{aligned}
$$

Manipulating into something we can actually calculate...

$$
\text { Remember, } y=f(x)
$$

$$
\begin{aligned}
d \ell=\sqrt{d x^{2}+d y^{2}} & =\sqrt{d x^{2}+d y^{2}} \frac{d x}{d x} \\
& =\sqrt{\frac{d x^{2}+d y^{2}}{d x^{2}}} d x=\sqrt{\frac{d x^{2}}{d x^{2}}+\frac{d y^{2}}{d x^{2}}} d x \\
& =\sqrt{\left(\frac{d x}{d x}\right)^{2}+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =\sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
\end{aligned}
$$

Manipulating into something we can actually calculate...

$$
\text { Remember, } y=f(x)
$$

$$
\begin{aligned}
d \ell=\sqrt{d x^{2}+d y^{2}} & =\sqrt{d x^{2}+d y^{2}} \frac{d x}{d x} \\
& =\sqrt{\frac{d x^{2}+d y^{2}}{d x^{2}}} d x=\sqrt{\frac{d x^{2}}{d x^{2}}+\frac{d y^{2}}{d x^{2}}} d x \\
& =\sqrt{\left(\frac{d x}{d x}\right)^{2}+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =\sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
\end{aligned}
$$

$$
\text { So } \quad \ell=\int_{x=a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

Example

Find the length of the arc $y=x^{3 / 2}$, from $x=1$ to $x=2$.

Example

Find the length of the arc $y=x^{3 / 2}$, from $x=1$ to $x=2$.

$$
f(x)=x^{3 / 2} \quad \Longrightarrow \quad f^{\prime}(x)=\frac{3}{2} x^{1 / 2}
$$

Example

Find the length of the arc $y=x^{3 / 2}$, from $x=1$ to $x=2$.

$$
f(x)=x^{3 / 2} \quad \Longrightarrow \quad f^{\prime}(x)=\frac{3}{2} x^{1 / 2}
$$

So

$$
1+\left(f^{\prime}(x)\right)^{2}=1+\left(\frac{3}{2} x^{1 / 2}\right)^{2}=1+\frac{9}{4} x
$$

Example

Find the length of the arc $y=x^{3 / 2}$, from $x=1$ to $x=2$.

$$
f(x)=x^{3 / 2} \quad \Longrightarrow \quad f^{\prime}(x)=\frac{3}{2} x^{1 / 2}
$$

So

$$
1+\left(f^{\prime}(x)\right)^{2}=1+\left(\frac{3}{2} x^{1 / 2}\right)^{2}=1+\frac{9}{4} x
$$

So

$$
\ell=\int_{1}^{2} \sqrt{1+\frac{9}{4} x} d x=\int_{1}^{2}\left(1+\frac{9}{4} x\right)^{1 / 2} d x
$$

Example

Find the length of the arc $y=x^{3 / 2}$, from $x=1$ to $x=2$.

$$
f(x)=x^{3 / 2} \quad \Longrightarrow \quad f^{\prime}(x)=\frac{3}{2} x^{1 / 2}
$$

So

$$
1+\left(f^{\prime}(x)\right)^{2}=1+\left(\frac{3}{2} x^{1 / 2}\right)^{2}=1+\frac{9}{4} x
$$

So

$$
\begin{gathered}
\ell=\int_{1}^{2} \sqrt{1+\frac{9}{4} x} d x=\int_{1}^{2}\left(1+\frac{9}{4} x\right)^{1 / 2} d x \\
=\left.\frac{4}{9} \frac{2}{3}\left(1+\frac{9}{4} x\right)^{3 / 2}\right|_{x=1} ^{2}=\frac{8}{27}\left(\left(1+\frac{9}{2}\right)^{3 / 2}-\left(1+\frac{9}{4}\right)^{3 / 2}\right)
\end{gathered}
$$

Find the length of the curve $y=x^{4}+\frac{1}{32 x^{2}}$ from $x=1$ to $x=2$.

Find the length of the curve $y=x^{4}+\frac{1}{32 x^{2}}$ from $x=1$ to $x=2$.

$$
f(x)=x^{4}+\frac{1}{32} x^{-2} \Longrightarrow f^{\prime}(x)=4 x^{3}-\frac{1}{16} x^{-3}=\frac{64 x^{6}-1}{16 x^{3}}
$$

Find the length of the curve $y=x^{4}+\frac{1}{32 x^{2}}$ from $x=1$ to $x=2$.

$$
f(x)=x^{4}+\frac{1}{32} x^{-2} \Longrightarrow f^{\prime}(x)=4 x^{3}-\frac{1}{16} x^{-3}=\frac{64 x^{6}-1}{16 x^{3}}
$$

Keeping the algebra tame:
Let $A=(2 x)^{3}=8 x^{3}$ and so $A^{2}=64 x^{6}$, and $f^{\prime}(x)=\frac{A^{2}-1}{2 A}$.

Find the length of the curve $y=x^{4}+\frac{1}{32 x^{2}}$ from $x=1$ to $x=2$.

$$
f(x)=x^{4}+\frac{1}{32} x^{-2} \Longrightarrow f^{\prime}(x)=4 x^{3}-\frac{1}{16} x^{-3}=\frac{64 x^{6}-1}{16 x^{3}}
$$

Keeping the algebra tame:
Let $A=(2 x)^{3}=8 x^{3}$ and so $A^{2}=64 x^{6}$, and $f^{\prime}(x)=\frac{A^{2}-1}{2 A}$. So
$1+\left(f^{\prime}(x)\right)^{2}=1+\left(\frac{A^{2}-1}{2 A}\right)^{2}$

Find the length of the curve $y=x^{4}+\frac{1}{32 x^{2}}$ from $x=1$ to $x=2$.

$$
f(x)=x^{4}+\frac{1}{32} x^{-2} \Longrightarrow f^{\prime}(x)=4 x^{3}-\frac{1}{16} x^{-3}=\frac{64 x^{6}-1}{16 x^{3}}
$$

Keeping the algebra tame:
Let $A=(2 x)^{3}=8 x^{3}$ and so $A^{2}=64 x^{6}$, and $f^{\prime}(x)=\frac{A^{2}-1}{2 A}$. So
$1+\left(f^{\prime}(x)\right)^{2}=1+\left(\frac{A^{2}-1}{2 A}\right)^{2}=1+\frac{A^{4}-2 A^{2}+1}{4 A^{2}}$

Find the length of the curve $y=x^{4}+\frac{1}{32 x^{2}}$ from $x=1$ to $x=2$.

$$
f(x)=x^{4}+\frac{1}{32} x^{-2} \Longrightarrow f^{\prime}(x)=4 x^{3}-\frac{1}{16} x^{-3}=\frac{64 x^{6}-1}{16 x^{3}}
$$

Keeping the algebra tame:
Let $A=(2 x)^{3}=8 x^{3}$ and so $A^{2}=64 x^{6}$, and $f^{\prime}(x)=\frac{A^{2}-1}{2 A}$. So
$1+\left(f^{\prime}(x)\right)^{2}=1+\left(\frac{A^{2}-1}{2 A}\right)^{2}=1+\frac{A^{4}-2 A^{2}+1}{4 A^{2}}=\frac{4 A^{2}+A^{4}-2 A^{2}+1}{4 A^{2}}$

Find the length of the curve $y=x^{4}+\frac{1}{32 x^{2}}$ from $x=1$ to $x=2$.

$$
f(x)=x^{4}+\frac{1}{32} x^{-2} \Longrightarrow f^{\prime}(x)=4 x^{3}-\frac{1}{16} x^{-3}=\frac{64 x^{6}-1}{16 x^{3}}
$$

Keeping the algebra tame:
Let $A=(2 x)^{3}=8 x^{3}$ and so $A^{2}=64 x^{6}$, and $f^{\prime}(x)=\frac{A^{2}-1}{2 A}$. So

$$
\begin{aligned}
1+ & \left(f^{\prime}(x)\right)^{2}=1+\left(\frac{A^{2}-1}{2 A}\right)^{2}=1+\frac{A^{4}-2 A^{2}+1}{4 A^{2}}=\frac{4 A^{2}+A^{4}-2 A^{2}+1}{4 A^{2}} \\
& =\frac{A^{4}+2 A^{2}+1}{4 A^{2}}
\end{aligned}
$$

Find the length of the curve $y=x^{4}+\frac{1}{32 x^{2}}$ from $x=1$ to $x=2$.

$$
f(x)=x^{4}+\frac{1}{32} x^{-2} \Longrightarrow f^{\prime}(x)=4 x^{3}-\frac{1}{16} x^{-3}=\frac{64 x^{6}-1}{16 x^{3}}
$$

Keeping the algebra tame:
Let $A=(2 x)^{3}=8 x^{3}$ and so $A^{2}=64 x^{6}$, and $f^{\prime}(x)=\frac{A^{2}-1}{2 A}$. So

$$
\begin{aligned}
1+ & \left(f^{\prime}(x)\right)^{2}=1+\left(\frac{A^{2}-1}{2 A}\right)^{2}=1+\frac{A^{4}-2 A^{2}+1}{4 A^{2}}=\frac{4 A^{2}+A^{4}-2 A^{2}+1}{4 A^{2}} \\
& =\frac{A^{4}+2 A^{2}+1}{4 A^{2}}=\left(\frac{A^{2}+1}{2 A}\right)^{2}
\end{aligned}
$$

Find the length of the curve $y=x^{4}+\frac{1}{32 x^{2}}$ from $x=1$ to $x=2$.

$$
f(x)=x^{4}+\frac{1}{32} x^{-2} \Longrightarrow f^{\prime}(x)=4 x^{3}-\frac{1}{16} x^{-3}=\frac{64 x^{6}-1}{16 x^{3}}
$$

Keeping the algebra tame:
Let $A=(2 x)^{3}=8 x^{3}$ and so $A^{2}=64 x^{6}$, and $f^{\prime}(x)=\frac{A^{2}-1}{2 A}$.
So

$$
\begin{aligned}
1+ & \left(f^{\prime}(x)\right)^{2}=1+\left(\frac{A^{2}-1}{2 A}\right)^{2}=1+\frac{A^{4}-2 A^{2}+1}{4 A^{2}}=\frac{4 A^{2}+A^{4}-2 A^{2}+1}{4 A^{2}} \\
& =\frac{A^{4}+2 A^{2}+1}{4 A^{2}}=\left(\frac{A^{2}+1}{2 A}\right)^{2}=\left(\frac{64 x^{6}+1}{16 x^{3}}\right)^{2}
\end{aligned}
$$

Find the length of the curve $y=x^{4}+\frac{1}{32 x^{2}}$ from $x=1$ to $x=2$.

$$
f(x)=x^{4}+\frac{1}{32} x^{-2} \Longrightarrow f^{\prime}(x)=4 x^{3}-\frac{1}{16} x^{-3}=\frac{64 x^{6}-1}{16 x^{3}}
$$

Keeping the algebra tame:
Let $A=(2 x)^{3}=8 x^{3}$ and so $A^{2}=64 x^{6}$, and $f^{\prime}(x)=\frac{A^{2}-1}{2 A}$.
So

$$
\begin{gathered}
1+\left(f^{\prime}(x)\right)^{2}=1+\left(\frac{A^{2}-1}{2 A}\right)^{2}=1+\frac{A^{4}-2 A^{2}+1}{4 A^{2}}=\frac{4 A^{2}+A^{4}-2 A^{2}+1}{4 A^{2}} \\
=\frac{A^{4}+2 A^{2}+1}{4 A^{2}}=\left(\frac{A^{2}+1}{2 A}\right)^{2}=\left(\frac{64 x^{6}+1}{16 x^{3}}\right)^{2}=\left(4 x^{3}+\frac{1}{16} x^{-3}\right)^{2}
\end{gathered}
$$

Most of the time,

 the resulting integral is "hard" (not elementary)Set up (but do not integrate) the integrals which compute the length of the following functions:

1. $f(x)=x^{2}$ from $x=-3$ to 2
2. $f(x)=x^{2}+5$ from $x=-3$ to 2
3. $f(x)=-x^{2}+\pi$ from $x=-3$ to 2
4. $f(x)=\sin (x)$ from $x=0$ to $\frac{\pi}{2}$
5. $f(x)=e^{x}$ from $x=0$ to 1
6. $f(x)=\sqrt{1-x^{2}}$ from $x=-1$ to 1

Most of the time,

 the resulting integral is "hard" (not elementary)Set up (but do not integrate) the integrals which compute the length of the following functions:

1. $f(x)=x^{2}$ from $x=-3$ to 2
2. $f(x)=x^{2}+5$ from $x=-3$ to 2
3. $f(x)=-x^{2}+\pi$ from $x=-3$ to 2
4. $f(x)=\sin (x)$ from $x=0$ to $\frac{\pi}{2}$
5. $f(x)=e^{x}$ from $x=0$ to 1
6. $f(x)=\sqrt{1-x^{2}}$ from $x=-1$ to 1

