Area between curves

Putting FTC and u-substitution together

Q. Calculate $\int_{0}^{\sqrt{\pi / 2}} x \sin \left(x^{2}\right) d x$.
A. Separate your solution into two steps.

Putting FTC and u-substitution together

Q. Calculate $\int_{0}^{\sqrt{\pi / 2}} x \sin \left(x^{2}\right) d x$.
A. Separate your solution into two steps.

Step 1: Find the antiderivative $F(x)$ of $f(x)=x \sin \left(x^{2}\right)$.

Putting FTC and u-substitution together

Q. Calculate $\int_{0}^{\sqrt{\pi / 2}} x \sin \left(x^{2}\right) d x$.
A. Separate your solution into two steps.

Step 1: Find the antiderivative $F(x)$ of $f(x)=x \sin \left(x^{2}\right)$.

Step 2: Use your answer to compute

$$
\int_{0}^{\sqrt{\pi / 2}} x \sin \left(x^{2}+3\right) d x=F(\pi / 2)-F(0)
$$

Putting FTC and u-substitution together

Q. Calculate $\int_{0}^{\sqrt{\pi / 2}} x \sin \left(x^{2}\right) d x$.
A. Separate your solution into two steps.

Step 1: Find the antiderivative $F(x)$ of $f(x)=x \sin \left(x^{2}\right)$.
Let $u=x^{2}$.

Step 2: Use your answer to compute

$$
\int_{0}^{\sqrt{\pi / 2}} x \sin \left(x^{2}+3\right) d x=F(\pi / 2)-F(0)
$$

Putting FTC and u-substitution together

Q. Calculate $\int_{0}^{\sqrt{\pi / 2}} x \sin \left(x^{2}\right) d x$.
A. Separate your solution into two steps.

Step 1: Find the antiderivative $F(x)$ of $f(x)=x \sin \left(x^{2}\right)$.
Let $u=x^{2}$. So $d u=2 x d x$, and $\frac{1}{2} d u=x d x$.

Step 2: Use your answer to compute

$$
\int_{0}^{\sqrt{\pi / 2}} x \sin \left(x^{2}+3\right) d x=F(\pi / 2)-F(0)
$$

Putting FTC and u-substitution together

Q. Calculate $\int_{0}^{\sqrt{\pi / 2}} x \sin \left(x^{2}\right) d x$.
A. Separate your solution into two steps.

Step 1: Find the antiderivative $F(x)$ of $f(x)=x \sin \left(x^{2}\right)$.
Let $u=x^{2}$. So $d u=2 x d x$, and $\frac{1}{2} d u=x d x$.
Therefore

$$
\begin{aligned}
\int x \sin \left(x^{2}\right) d x & =\int \sin (u) * \frac{1}{2} d u \\
& =-\frac{1}{2} \cos (u)+C=-\frac{1}{2} \cos \left(x^{2}\right)+C
\end{aligned}
$$

Step 2: Use your answer to compute

$$
\int_{0}^{\sqrt{\pi / 2}} x \sin \left(x^{2}+3\right) d x=F(\pi / 2)-F(0)
$$

Putting FTC and u-substitution together

Q. Calculate $\int_{0}^{\sqrt{\pi / 2}} x \sin \left(x^{2}\right) d x$.
A. Separate your solution into two steps.

Step 1: Find the antiderivative $F(x)$ of $f(x)=x \sin \left(x^{2}\right)$.
Let $u=x^{2}$. So $d u=2 x d x$, and $\frac{1}{2} d u=x d x$.
Therefore

$$
\begin{aligned}
\int x \sin \left(x^{2}\right) d x & =\int \sin (u) * \frac{1}{2} d u \\
& =-\frac{1}{2} \cos (u)+C=-\frac{1}{2} \cos \left(x^{2}\right)+C
\end{aligned}
$$

Step 2: Use your answer to compute

$$
\int_{0}^{\sqrt{\pi / 2}} x \sin \left(x^{2}+3\right) d x=F(\pi / 2)-F(0)
$$

$$
\int_{0}^{\pi / 2} x \sin \left(x^{2}+3\right) d x=-\frac{1}{2} \cos \left((\sqrt{\pi / 2})^{2}\right)-\left(-\frac{1}{2} \cos \left(0^{2}\right)\right)=1 / 2
$$

Warm-up

1. Calculate the area under the curve $y=-x^{2}+5 x-6$ between $x=1$ and $x=2$.
2. Calculate the area contained between the curve $y=-x^{2}+5 x-6$ and the x-axis.
(Draw a picture. Where does $y=-x^{2}+5 x-6$ intersect the x-axis? Those are your bounds.)
3. Calculate the area contained between the curve $y=x^{2}-5 x+6$ and the x-axis.
(Draw a picture. Your answer should be positive - we want area.)

Areas Between Curves

We know that if f is a continuous nonnegative function on the interval $[a, b]$, then $\int_{a}^{b} f(x) d x$ is the area under the graph of f and above the interval.

Now suppose we are given two continuous functions, $f(x)$ and $g(x)$ so that $g(x) \leq f(x)$ for all x in the interval $[a, b]$.

How do we find the area bounded by the two functions over that interval?
$f=$ top function
$g=$ bottom function

Area between f and $g=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x=\int_{a}^{b} f(x)-g(x) d x$

$\mathrm{f}=$ top function
 $g=$ bottom function

Area between f and $g=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x=\int_{a}^{b} f(x)-g(x) d x$

f $=$ top function
$g=$ bottom function

Area between f and $g=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x=\int_{a}^{b} f(x)-g(x) d x$

Example

Find the area of the region between the graphs of $y=x^{2}$ and $y=x^{3}$ for $0 \leq x \leq 1$.

Example

Find the area of the region between the graphs of $y=x^{2}$ and $y=x^{3}$ for $0 \leq x \leq 1$.

Example

Find the area of the region between the graphs of $y=x^{2}$ and $y=x^{3}$ for $0 \leq x \leq 1$.

Intersections: where does $x^{2}=x^{3}$?

Example

Find the area of the region between the graphs of $y=x^{2}$ and $y=x^{3}$ for $0 \leq x \leq 1$.

Intersections: where does $x^{2}=x^{3} ? x=0$ or 1

Example

Find the area of the region between the graphs of $y=x^{2}$ and $y=x^{3}$ for $0 \leq x \leq 1$.

Top: $x^{2} \quad$ Bottom: x^{3}
Intersections: where does $x^{2}=x^{3}$? $x=0$ or 1

So \quad Area $=\int_{0}^{1} x^{2}-x^{3} d x$

Example

Find the area of the region between the graphs of $y=x^{2}$ and $y=x^{3}$ for $0 \leq x \leq 1$.

Top: $x^{2} \quad$ Bottom: x^{3}
Intersections: where does $x^{2}=x^{3} ? ~ x=0$ or 1

So \quad Area $=\int_{0}^{1} x^{2}-x^{3} d x=\frac{1}{3} x^{3}-\left.\frac{1}{4} x^{4}\right|_{x=0} ^{1}=\left(\frac{1}{3}-\frac{1}{4}\right)-0>0 \checkmark$

Example

Find the area of the region bounded by the two curves $y=x^{3}-9 x$ and $y=9-x^{2}$.

1. Check for intersection points (Solve $x^{3}-9 x=9-x^{2}$).

Example

Find the area of the region bounded by the two curves $y=x^{3}-9 x$ and $y=9-x^{2}$.

1. Check for intersection points (Solve $x^{3}-9 x=9-x^{2}$).

Example

Find the area of the region bounded by the two curves $y=x^{3}-9 x$ and $y=9-x^{2}$.

1. Check for intersection points (Solve $x^{3}-9 x=9-x^{2}$).

2. Area $=$ Area $A+$ Area B

Example

Find the area of the region bounded by the two curves $y=x^{3}-9 x$ and $y=9-x^{2}$.

1. Check for intersection points (Solve $x^{3}-9 x=9-x^{2}$).

2. Area $=$ Area $A+$ Area B

$$
\text { Area } \mathrm{A}=\int_{-3}^{-1}\left(x^{3}-9 x\right)-\left(9-x^{2}\right) d x=\int_{-3}^{-1} x^{3}+x^{2}-9 x-9 d x
$$

Example

Find the area of the region bounded by the two curves $y=x^{3}-9 x$ and $y=9-x^{2}$.

1. Check for intersection points (Solve $x^{3}-9 x=9-x^{2}$).

2. Area $=$ Area $A+$ Area B

Area $\mathrm{A}=\int_{-3}^{-1}\left(x^{3}-9 x\right)-\left(9-x^{2}\right) d x=\int_{-3}^{-1} x^{3}+x^{2}-9 x-9 d x$ Area $\mathrm{B}=\int_{-1}^{3}\left(9-x^{2}\right)-\left(x^{3}-9 x\right) d x=-\int_{-1}^{3} x^{3}+x^{2}-9 x-9 d x$

Functions of y

We could just as well consider two functions of y, say, $x=f_{\text {Left }}(y)$ and $x=g_{\text {Right }}(y)$ defined on the interval $[c, d]$.

Area Between the Two Curves

Find the area under the graph of $y=\ln x$ and above the interval [$1, e$] on the x-axis.

Area Between the Two Curves

Find the area under the graph of $y=\ln x$ and above the interval [$1, e$] on the x-axis.

Area Between the Two Curves

Find the area under the graph of $y=\ln x$ and above the interval [$1, e$] on the x-axis.

$$
\text { area }=\int_{y=0}^{1} e-e^{y} d y
$$

Area Between the Two Curves

Find the area under the graph of $y=\ln x$ and above the interval [$1, e$] on the x-axis.

area $=\int_{y=0}^{1} e-e^{y} d y=\left.\left(e * y-e^{y}\right)\right|_{y=0} ^{1}=(e-e)-(0-1)=1$.

