Area between curves

Putting FTC and *u*-substitution together Q. Calculate $\int_0^{\sqrt{\pi/2}} x \sin(x^2) dx$.

- A. Separate your solution into two steps.

Q. Calculate $\int_{0}^{\sqrt{\pi/2}} x \sin(x^2) dx$.

A. Separate your solution into two steps.

Step 1: Find the antiderivative F(x) of $f(x) = x \sin(x^2)$.

Q. Calculate $\int_{0}^{\sqrt{\pi/2}} x \sin(x^2) dx$.

A. Separate your solution into two steps.

Step 1: Find the antiderivative F(x) of $f(x) = x \sin(x^2)$.

Step 2: Use your answer to compute

$$\int_{0}^{\sqrt{\pi/2}} x \sin(x^2 + 3) \, dx = F(\pi/2) - F(0).$$

Q. Calculate $\int_{0}^{\sqrt{\pi/2}} x \sin(x^2) dx$.

A. Separate your solution into two steps.

Step 1: Find the antiderivative F(x) of $f(x) = x \sin(x^2)$.

Let $u = x^2$.

Step 2: Use your answer to compute

$$\int_{0}^{\sqrt{\pi/2}} x \sin(x^2 + 3) \, dx = F(\pi/2) - F(0).$$

Q. Calculate $\int_{0}^{\sqrt{\pi/2}} x \sin(x^2) dx$.

A. Separate your solution into two steps.

Step 1: Find the antiderivative F(x) of $f(x) = x \sin(x^2)$.

Let $u = x^2$. So du = 2x dx, and $\frac{1}{2} du = x dx$.

Step 2: Use your answer to compute

$$\int_{0}^{\sqrt{\pi/2}} x \sin(x^2 + 3) \, dx = F(\pi/2) - F(0).$$

Q. Calculate $\int_{0}^{\sqrt{\pi/2}} x \sin(x^2) dx$.

A. Separate your solution into two steps.

Step 1: Find the antiderivative F(x) of $f(x) = x \sin(x^2)$.

Let $u = x^2$. So du = 2x dx, and $\frac{1}{2} du = x dx$. Therefore

$$\int x \sin(x^2) \, dx = \int \sin(u) * \frac{1}{2} \, du$$
$$= -\frac{1}{2} \cos(u) + C = -\frac{1}{2} \cos(x^2) + C$$

Step 2: Use your answer to compute $\int_{0}^{\sqrt{\pi/2}} x \sin(x^2 + 3) \, dx = F(\pi/2) - F(0).$

Q. Calculate $\int_{0}^{\sqrt{\pi/2}} x \sin(x^2) dx$.

A. Separate your solution into two steps.

Step 1: Find the antiderivative F(x) of $f(x) = x \sin(x^2)$.

Let $u = x^2$. So du = 2x dx, and $\frac{1}{2} du = x dx$. Therefore

$$\int x \sin(x^2) \, dx = \int \sin(u) * \frac{1}{2} \, du$$
$$= -\frac{1}{2} \cos(u) + C = -\frac{1}{2} \cos(x^2) + C$$

Step 2: Use your answer to compute

$$\int_{0}^{\sqrt{\pi/2}} x \sin(x^{2} + 3) \, dx = F(\pi/2) - F(0).$$

$$\int_{0}^{\pi/2} x \sin(x^{2} + 3) \, dx = -\frac{1}{2} \cos((\sqrt{\pi/2})^{2}) - \left(-\frac{1}{2} \cos(0^{2})\right) = 1/2$$

Warm-up

- 1. Calculate the area under the curve $y = -x^2 + 5x 6$ between x = 1 and x = 2.
- 2. Calculate the area contained between the curve y = -x² + 5x 6 and the x-axis.
 (Draw a picture. Where does y = -x² + 5x 6 intersect the x-axis? Those are your bounds.)
- 3. Calculate the area contained between the curve y = x² 5x + 6 and the x-axis.
 (Draw a picture. Your answer should be positive we want *area*.)

We know that if f is a continuous nonnegative function on the interval [a, b], then $\int_a^b f(x) dx$ is the area under the graph of f and above the interval.

Now suppose we are given two continuous functions, f(x) and g(x) so that $g(x) \le f(x)$ for all x in the interval [a, b].

How do we find the area bounded by the two functions over that interval?

f = top function

g = bottom function

Area between f and
$$g = \int_a^b f(x) dx - \int_a^b g(x) dx = \int_a^b f(x) - g(x) dx$$

So Area =
$$\int_0^1 x^2 - x^3 dx$$

So Area =
$$\int_0^1 x^2 - x^3 dx = \frac{1}{3}x^3 - \frac{1}{4}x^4\Big|_{x=0}^1 = \boxed{\left(\frac{1}{3} - \frac{1}{4}\right) - 0} > 0\sqrt{2}$$

Find the area of the region bounded by the two curves $y = x^3 - 9x$ and $y = 9 - x^2$.

1. Check for intersection points (Solve $x^3 - 9x = 9 - x^2$).

Find the area of the region bounded by the two curves $y = x^3 - 9x$ and $y = 9 - x^2$.

1. Check for intersection points (Solve $x^3 - 9x = 9 - x^2$).

Find the area of the region bounded by the two curves $y = x^3 - 9x$ and $y = 9 - x^2$.

1. Check for intersection points (Solve $x^3 - 9x = 9 - x^2$).

2. Area = Area A + Area B

Find the area of the region bounded by the two curves $y = x^3 - 9x$ and $y = 9 - x^2$.

1. Check for intersection points (Solve $x^3 - 9x = 9 - x^2$).

2. Area = Area A + Area B

Area A =
$$\int_{-3}^{-1} (x^3 - 9x) - (9 - x^2) dx = \int_{-3}^{-1} x^3 + x^2 - 9x - 9 dx$$

Find the area of the region bounded by the two curves $y = x^3 - 9x$ and $y = 9 - x^2$.

1. Check for intersection points (Solve $x^3 - 9x = 9 - x^2$).

2. Area = Area A + Area B

Area A =
$$\int_{-3}^{-1} (x^3 - 9x) - (9 - x^2) dx = \int_{-3}^{-1} x^3 + x^2 - 9x - 9 dx$$

Area B = $\int_{-1}^{3} (9-x^2) - (x^3 - 9x) dx = -\int_{-1}^{3} x^3 + x^2 - 9x - 9 dx$

Functions of y

We could just as well consider two functions of y, say, $x = f_{Left}(y)$ and $x = g_{Right}(y)$ defined on the interval [c, d].

area
$$=\int_{y=0}^{1}e-e^{y}dy$$

area
$$= \int_{y=0}^{1} e - e^{y} dy = (e * y - e^{y})|_{y=0}^{1} = (e - e) - (0 - 1) = 1.$$