## Area between curves

Putting FTC and $u$-substitution together
Q. Calculate $\int_{0}^{\sqrt{\pi / 2}} x \sin \left(x^{2}\right) d x$.
A. Separate your solution into two steps.

Step 1: Find the antiderivative $F(x)$ of $f(x)=x \sin \left(x^{2}\right)$.
Let $u=x^{2}$. So $d u=2 x d x$, and $\frac{1}{2} d u=x d x$.
Therefore

$$
\begin{aligned}
\int x \sin \left(x^{2}\right) d x & =\int \sin (u) * \frac{1}{2} d u \\
& =-\frac{1}{2} \cos (u)+C=-\frac{1}{2} \cos \left(x^{2}\right)+C
\end{aligned}
$$

Step 2: Use your answer to compute

$$
\begin{gathered}
\int_{0}^{\sqrt{\pi / 2}} x \sin \left(x^{2}+3\right) d x=F(\pi / 2)-F(0) \\
\int_{0}^{\pi / 2} x \sin \left(x^{2}+3\right) d x=-\frac{1}{2} \cos \left((\sqrt{\pi / 2})^{2}\right)-\left(-\frac{1}{2} \cos \left(0^{2}\right)\right)=1 / 2
\end{gathered}
$$

## Warm-up

1. Calculate the area under the curve $y=-x^{2}+5 x-6$ between $x=1$ and $x=2$.
2. Calculate the area contained between the curve $y=-x^{2}+5 x-6$ and the $x$-axis.
(Draw a picture. Where does $y=-x^{2}+5 x-6$ intersect the $x$-axis? Those are your bounds.)
3. Calculate the area contained between the curve $y=x^{2}-5 x+6$ and the $x$-axis.
(Draw a picture. Your answer should be positive - we want area.)

## Areas Between Curves

We know that if $f$ is a continuous nonnegative function on the interval $[a, b]$, then $\int_{a}^{b} f(x) d x$ is the area under the graph of $f$ and above the interval.

Now suppose we are given two continuous functions, $f(x)$ and $g(x)$ so that $g(x) \leq f(x)$ for all $x$ in the interval $[a, b]$.

How do we find the area bounded by the two functions over that interval?




Area between $f$ and $g=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x=\int_{a}^{b} f(x)-g(x) d x$


Area between $f$ and $g=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x=\int_{a}^{b} f(x)-g(x) d x$


Area between $f$ and $g=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x=\int_{a}^{b} f(x)-g(x) d x$

## Example

Find the area of the region between the graphs of $y=x^{2}$ and $y=x^{3}$ for $0 \leq x \leq 1$.


Top: $x^{2} \quad$ Bottom: $x^{3}$
Intersections: where does $x^{2}=x^{3}$ ? $x=0$ or 1

So $\quad$ Area $=\int_{0}^{1} x^{2}-x^{3} d x=\frac{1}{3} x^{3}-\left.\frac{1}{4} x^{4}\right|_{x=0} ^{1}=\left(\frac{1}{3}-\frac{1}{4}\right)-0>0 \checkmark$

## Example

Find the area of the region bounded by the two curves $y=x^{3}-9 x$ and $y=9-x^{2}$.

1. Check for intersection points (Solve $x^{3}-9 x=9-x^{2}$ ).

2. Area $=$ Area $A+$ Area $B$

Area $\mathrm{A}=\int_{-3}^{-1}\left(x^{3}-9 x\right)-\left(9-x^{2}\right) d x=\int_{-3}^{-1} x^{3}+x^{2}-9 x-9 d x$
Area $\mathrm{B}=\int_{-1}^{3}\left(9-x^{2}\right)-\left(x^{3}-9 x\right) d x=-\int_{-1}^{3} x^{3}+x^{2}-9 x-9 d x$

## Functions of $y$

We could just as well consider two functions of $y$, say, $x=f_{\text {Left }}(y)$ and $x=g_{\text {Right }}(y)$ defined on the interval $[c, d]$.


## Area Between the Two Curves

Find the area under the graph of $y=\ln x$ and above the interval $[1, e]$ on the $x$-axis.


area $=\int_{y=0}^{1} e-e^{y} d y=\left.\left(e * y-e^{y}\right)\right|_{y=0} ^{1}=(e-e)-(0-1)=1$.

## Worksheet: Area between curves

## Example 1:

Find the area of the region between $y=e^{x}$ and $y=1 /(1+x)$ on the interval $[0,1]$.


1. Check for intersection points (verify algebraically that $x=0$ is the only intersection by setting $e^{x}=$ $\left.\frac{1}{x+1}\right)$.
2. Decide which function is on top $(f(x))$ and which function is on bottom $(g(x))$.
3. Calculate $\int_{0}^{1} f(x)-g(x) d x$.

Check: What if you get a negative answer?

## Example 2:

Find the area of the region bounded by $y=x^{2}-2 x$ and $y=4-x^{2}$.

1. Check for intersection points (Solve $x^{2}-2 x=4-x^{2}$ ). There will be two, $a$ and $b$; this is where the functions cross.
2. Between this two points, which function is on top $(f(x))$ and which function is on bottom $(g(x))$.
3. Calculate $\int_{a}^{b} f(x)-g(x) d x$.

Check: What if you get a negative answer?

## Example 3

Find the area between $\sin x$ and $\cos x$ on $[-3 \pi / 4,5 \pi / 4]$.
(Hint: There are several places where $\sin (x)=\cos (x)$. For example, $x=\pi / 4$.)

## Example 4

Calculate the area under the curve $y=\arccos (x)$ from $x=0$ to $x=1$.
Hint: Since we don't know $\int \arccos (x) d x$, use the fact that $y=\arccos (x)$ if and only if $\cos (y)=x$. (1) Draw graphs of both $y=\arccos (x)$ and $x=\cos (y)$ on separate axes (the first with $x$ on the horizontal axis, and the second with $y$ on the horizontal axis).
(2) What integral, involving $\cos (y)$ (and endpoints for $y$ 's instead of $x$ 's, and with a $d y$ instead of a $d x$ ) will compute the same area as $\int_{0}^{1} \arccos (x) d x$ ?

## Example 5

Calculate the area under the curve $y=\arcsin (x)$ from $x=0$ to $x=1$.
Hint: Similar to Example 4, but be careful! Be sure to draw the pictures before writing down the corresponding integrals!

## Answers

Example 1: $e-1-\ln (2)$
Example 2: 9

Graph for example 2


Example 3: $4 \sqrt{2}$


Example 4: 1


Example 5: $\frac{\pi}{2}-1$


Extra practice: Areas using definite integrals

1. Find the area of the region bounded by the curve $x y-3 x-2 y-10=0$, the $x$-axis, and the lines $x=3$ and $x=4$.
2. Find the area lying below the $x$-axis and above the parabola $y=4 x+x^{2}$.
3. Graph the curve $y=2 \sqrt{9-x^{2}}$ and determine the area enclosed between the curve and the $x$-axis.
4. Find the area bounded by the curve $y=x(x-3)(x-5)$, the $x$-axis and the lines $x=0$ and $x=5$.
5. Find the area enclosed between the curve $y=\sin 2 x, 0 \leq x \leq \pi / 4$ and the axes.
6. Find the area enclosed between the curve $y=\cos 2 x, 0 \leq x \leq \pi / 4$ and the axes.
7. Find the area enclosed between the curve $y=3 \cos x, 0 \leq x \leq \pi / 2$ and the axes.
8. Show that the ratio of the areas under the curves $y=\sin x$ and $y=\sin 2 x$ between the lines $x=0$ and $x=\pi / 3$ is $2 / 3$.
9. Find the area enclosed between the curve $y=\cos 3 x, 0 \leq x \leq \pi / 6$ and the axes.
10. Find the area enclosed between the curve $y=\tan ^{2} x, 0 \leq x \leq \pi / 4$ and the axes.
11. Find the area enclosed between the curve $y=\csc ^{2} x, 0 \leq x \leq \pi / 4$ and the axes.
12. Compare the areas under the curves $y=\cos ^{2} x$ and $y=\sin ^{2} x$ between $x=0$ and $x=\pi$.
13. Graph the curve $y=x / \pi+2 \sin ^{2} x$ and find the area between the $x$-axis, the curve and the lines $x=0$ and $x=\pi$.
14. Find the area bounded by $y=\sin x$ and the $x$-axis between $x=0$ and $x=2 \pi$.
15. Find the area of the region bounded by the parabola $y^{2}=4 x$ and the line $y=2 x$.
16. Find the area bounded by the curve $y=x(2-x)$ and the line $x=2 y$.
17. Find the area bounded by the curve $x^{2}=4 y$ and the line $x=4 y-2$.
18. Calculate the area of the region bounded by the parabolas $y=x^{2}$ and $x=y^{2}$.
19. Find the area of the region included between the parabola $y^{2}=x$ and the line $x+y=2$.
20. Find the area of the region bounded by the curves $y=\sqrt{x}$ and $y=x$.
21. Find the area of the part of the first quadrant which is between the parabola $y^{2}=3 x$ and the circle $x^{2}+y^{2}-6 x=0$.
22. Find the area of the region between the curves $y^{2}=4 x$ and $x=3$.
23. Use integration to find the area of the triangular region bounded by the lines $y=2 x+1, y=3 x+1$ and $x=4$.
24. Find the area bounded by the parabola $x^{2}-2=y$ and the line $x+y=0$.
25. Find the area bounded by the curves $y=3 x-x^{2}$ and $y=x^{2}-x$.
26. Graph the curve $y=(1 / 2) x^{2}+1$ and the straight line $y=x+1$ and find the area between the curve and the line.
27. Find the area of the region between the parabolas $4 y^{2}=9 x$ and $3 x^{2}=16 y$.
28. Find the area of the region between the curves $x^{2}+y^{2}=2$ and $x=y^{2}$.
29. Find the area of the region between the curves $y=x^{2}$ and $x^{2}+4(y-1)=0$.
30. Find the area of the region between the circles $x^{2}+y^{2}=4$ and $(x-2)^{2}+y^{2}=4$.
31. Find the area of the region enclosed by the parabola $y^{2}=4 a x$ and the line $y=m x$.
32. Find the area between the parabolas $y=4 a x$ and $y^{2}=4 a y$.
33. Find the area of the region between the two circles $x^{2}+y^{2}=1$ and $(x-1)^{2}+y^{2}=1$.
34. Find the area bounded by the curves $y=x$ and $y=x^{3}$.
35. Graph $y=\sin x$ and $y=\cos x$ for $0 \leq x \leq \pi / 2$ and find the area enclosed by them and the $x$-axis.
