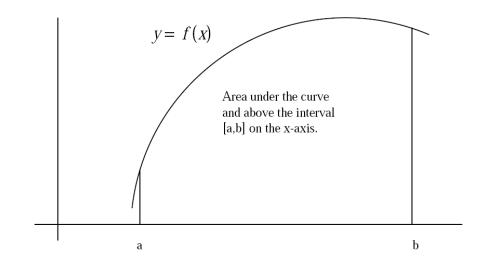
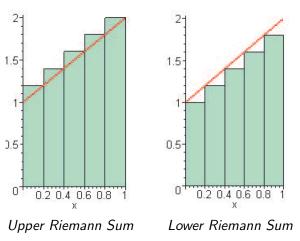


The Area Problem



Upper and Lower Sums

Suppose we want to use rectangles to approximate the area under the graph of y = x + 1 on the interval [0,1].



31/20 > 1.5 > 29/20

As you take more and more smaller and smaller rectangles, if f is nice, both of these will approach the real area.

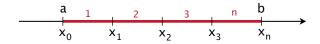
n	U	L
100	1.505000000	1.495000000
150	1.503333333	1.496666667
200	1.502500000	1.497500000
300	1.501666667	1.498333333
500	1.501000000	1.499000000

Let y = f(x) be given and defined on an interval [a, b].

Let y = f(x) be given and defined on an interval [a, b].

Break the interval into n equal pieces.

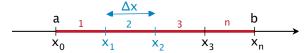
Let y = f(x) be given and defined on an interval [a, b].



Break the interval into n equal pieces.

Label the endpoints of those pieces x_0, x_1, \ldots, x_n .

Let y = f(x) be given and defined on an interval [a, b].

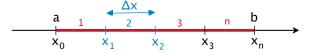


Break the interval into n equal pieces.

Label the endpoints of those pieces x_0, x_1, \ldots, x_n .

Let $\Delta x = x_i - x_{i-1} = \frac{b-a}{n}$ be the width of each interval.

Let y = f(x) be given and defined on an interval [a, b].



Break the interval into n equal pieces.

Label the endpoints of those pieces x_0, x_1, \ldots, x_n .

Let $\Delta x = x_i - x_{i-1} = \frac{b-a}{n}$ be the width of each interval.

The **Upper Riemann Sum** is: let M_i be the *maximum* value of the function on that i^{th} interval, so

$$U(f, P) = M_1 \Delta x + M_2 \Delta x + \cdots + M_n \Delta x.$$

Let y = f(x) be given and defined on an interval [a, b].

Break the interval into n equal pieces.

Label the endpoints of those pieces x_0, x_1, \ldots, x_n .

Let $\Delta x = x_i - x_{i-1} = \frac{b-a}{n}$ be the width of each interval.

The **Upper Riemann Sum** is: let M_i be the *maximum* value of the function on that i^{th} interval, so

$$U(f, P) = M_1 \Delta x + M_2 \Delta x + \cdots + M_n \Delta x.$$

The **Lower Riemann Sum** is: let m_i be the *minimum* value of the function on that i^{th} interval, so

$$L(f, P) = m_1 \Delta x + m_2 \Delta x + \cdots + m_n \Delta x$$
.

Let y = f(x) be given and defined on an interval [a, b].

Break the interval into n equal pieces.

Label the endpoints of those pieces x_0, x_1, \ldots, x_n .

Let $\Delta x = x_i - x_{i-1} = \frac{b-a}{n}$ be the width of each interval.

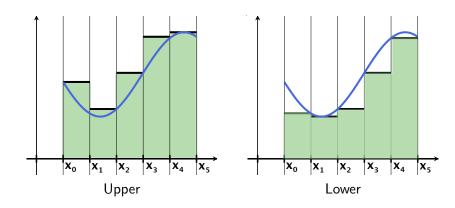
The **Upper Riemann Sum** is: let M_i be the *maximum* value of the function on that i^{th} interval, so

$$U(f, P) = M_1 \Delta x + M_2 \Delta x + \cdots + M_n \Delta x.$$

The **Lower Riemann Sum** is: let m_i be the *minimum* value of the function on that ith interval, so

$$L(f, P) = m_1 \Delta x + m_2 \Delta x + \cdots + m_n \Delta x$$
.

Take the limit as $n \to \infty$ or $\Delta x \to 0$.



Sigma Notation

If m and n are integers with $m \le n$, and if f is a function defined on the integers from m to n, then the symbol $\sum_{i=m}^{n} f(i)$, called sigma notation, is means

$$\sum_{i=m}^{n} f(i) = f(m) + f(m+1) + f(m+2) + \cdots + f(n)$$

Sigma Notation

If m and n are integers with $m \le n$, and if f is a function defined on the integers from m to n, then the symbol $\sum_{i=m}^{n} f(i)$, called sigma notation, is means

$$\sum_{i=1}^{n} f(i) = f(m) + f(m+1) + f(m+2) + \cdots + f(n)$$

Examples:
$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n$$
$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + 3^2 + \dots + n^2$$
$$\sum_{i=1}^{n} \sin(i) = \sin(1) + \sin(2) + \sin(3) + \dots + \sin(n)$$
$$\sum_{i=1}^{n-1} x^i = x^0 + x + x^2 + x^2 + x^3 + x^4 + \dots + x^{n-1}$$

Sigma Notation

If m and n are integers with $m \le n$, and if f is a function defined on the integers from m to n, then the symbol $\sum_{i=m}^{n} f(i)$, called sigma notation, is means

$$\sum_{i=1}^{n} f(i) = f(m) + f(m+1) + f(m+2) + \cdots + f(n)$$

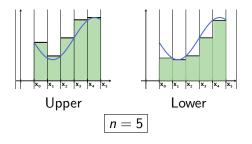
Examples:
$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n$$
$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + 3^2 + \dots + n^2$$
$$\sum_{i=1}^{n} \sin(i) = \sin(1) + \sin(2) + \sin(3) + \dots + \sin(n)$$
$$\sum_{i=0}^{n-1} x^i = 1 + x + x^2 + x^2 + x^3 + x^4 + \dots + x^{n-1}$$

The Area Problem Revisited

Upper Riemann Sum
$$= \sum_{i=1}^{n} M_i \Delta x$$

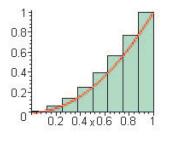
Lower Riemann Sum $= \sum_{i=1}^{n} m_i \Delta x$,

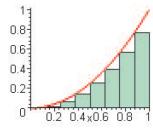
where M_i and m_i are, respectively, the maximum and minimum values of f on the ith subinterval $[x_{i-1}, x_i]$, $1 \le i \le n$.



Example

Use an Upper Riemann Sum and a Lower Riemann Sum, first with 8, then with 100 subintervals of equal length to approximate the area under the graph of $y = f(x) = x^2$ on the interval [0,1].





The Definite Integral

We say that f is integrable on [a, b] if there exists a number A such that

Lower Riemann Sum $\leq A \leq$ Upper Riemann Sum

for all n. We write the number as

$$A = \int_{a}^{b} f(x) dx$$

and call it the **definite integral** of f over [a, b].

The Definite Integral

We say that f is integrable on [a, b] if there exists a number A such that

Lower Riemann Sum $\leq A \leq$ Upper Riemann Sum

for all n. We write the number as

$$A = \int_{a}^{b} f(x) dx$$

and call it the **definite integral** of f over [a, b].

Trickiness: Who wants to find maxima/minima over every interval? Especially as $n \to \infty$? Calculus nightmare!!

Let f be defined on [a, b], and pick a positive integer n. Let

$$\Delta x = \frac{b-a}{n}$$

Let f be defined on [a, b], and pick a positive integer n.

$$\Delta x = \frac{b-a}{r}$$

Notice:

Let

$$x + 0 = a$$
, $x_1 = a + \Delta x$, $x_2 = a + 2\Delta x$, $x_3 = a + 3\Delta x$,...

Let f be defined on [a, b], and pick a positive integer n.

$$\Delta x = \frac{b-a}{a}$$

Notice:

Let

$$x + 0 = a$$
, $x_1 = a + \Delta x$, $x_2 = a + 2\Delta x$, $x_3 = a + 3\Delta x$,...

So let

$$x_i = a + i * \Delta x.$$

Let f be defined on [a, b], and pick a positive integer n.

$$\Delta x = \frac{b-a}{n}$$
 and $x_i = a + i * \Delta x$.

Let f be defined on [a, b], and pick a positive integer n. Let

$$\Delta x = \frac{b-a}{n}$$
 and $x_i = a+i * \Delta x$.

$$x_i = a + i * \Delta x$$

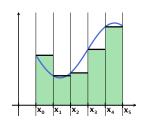
Then the Right Riemann Sum is

$$\sum_{i=1}^n f(x_i) \Delta x,$$



and the Left Riemann Sum is

$$\sum_{i=0}^{n-1} f(x_i) \Delta x_i.$$



Integrals made easier

Theorem

If f is continuous on [a, b], then f is Riemann integrable on [a, b].

Integrals made easier

Theorem

If f is continuous on [a, b], then f is Riemann integrable on [a, b].

Theorem

If f is Riemann integrable on [a, b], then

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(c_{i}) \Delta x_{i}$$

where c_i is **any** point in the interval $[x_{i-1}, x_i]$.

Integrals made easier

Theorem

If f is continuous on [a, b], then f is Riemann integrable on [a, b].

Theorem

If f is Riemann integrable on [a, b], then

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(c_{i}) \Delta x_{i}$$

where c_i is **any** point in the interval $[x_{i-1}, x_i]$.

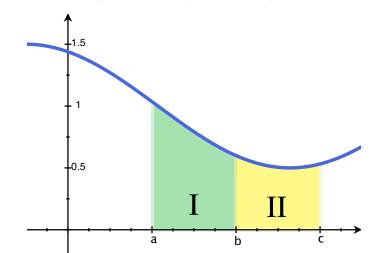
Punchline: (1) Every continuous function has an integral, and (2) we can get there by just using right or left sums! (instead of upper or lower sums)

Properties of the Definite Integral

1.
$$\int_{a}^{a} f(x)dx = 0$$
.

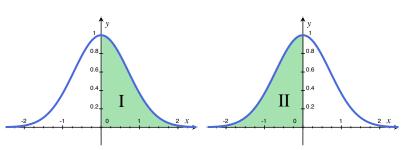
- 2. If f is integrable and
 - (a) $f(x) \ge 0$ on [a, b], then $\int_a^b f(x) dx$ equals the area of the region under the graph of f and above the interval [a, b];
 - (b) $f(x) \le 0$ on [a, b], then $\int_a^b f(x) dx$ equals the **negative** of the area of the region between the interval [a, b] and the graph of f.
- 3. $\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$.

4. If a < b < c, $\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$



5. If f is an **even** function, then

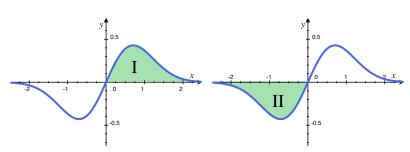
$$\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx.$$



 $Area\ I = Area\ II$

6. If f is an **odd** function, then

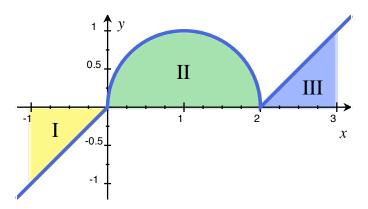
$$\int_{-a}^{a} f(x)dx = 0.$$



 $\mathsf{Area}\ I = \mathsf{Area}\ II$

Example

If
$$f(x) = \begin{cases} x, & x < 0, \\ \sqrt{1 - (x - 1)^2}, & 0 \ge x \le 2, \text{ what is } \int_{-1}^3 f(x) dx? \\ x - 2, & x \ge 2, \end{cases}$$



Mean Value Theorem for Definite Integrals

Theorem

Let f be continuous on the interval [a,b]. Then there exists c in [a,b] such that

$$\int_a^b f(x)dx = (b-a)f(c).$$

Definition

The average value of a continuous function on the interval [a, b] is

$$\frac{1}{b-a}\int_a^b f(x)dx.$$