The Definite Integral

The Area Problem

Upper and Lower Sums

Suppose we want to use rectangles to approximate the area under the graph of y = x + 1 on the interval [0, 1].

As you take more and more smaller and smaller rectangles, if f is nice, both of these will approach the real area.

n	U	L
100	1.505000000	1.495000000
150	1.503333333	1.496666667
200	1.502500000	1.497500000
300	1.501666667	1.498333333
500	1.501000000	1.499000000

In general: finding the Area Under a Curve

Let y = f(x) be given and defined on an interval [a, b].

Break the interval into *n* equal pieces.

Label the endpoints of those pieces x_0, x_1, \ldots, x_n .

Let $\Delta x = x_i - x_{i-1} = \frac{b-a}{n}$ be the width of each interval.

The **Upper Riemann Sum** is: let M_i be the *maximum* value of the function on that i^{th} interval, so

 $U(f, P) = M_1 \Delta x + M_2 \Delta x + \cdots + M_n \Delta x.$

The **Lower Riemann Sum** is: let m_i be the *minimum* value of the function on that i^{th} interval, so

 $L(f, P) = m_1 \Delta x + m_2 \Delta x + \cdots + m_n \Delta x).$

Take the limit as $n \to \infty$ or $\Delta x \to 0$.

Sigma Notation

If *m* and *n* are integers with $m \le n$, and if *f* is a function defined on the integers from *m* to *n*, then the symbol $\sum_{i=m}^{n} f(i)$, called sigma notation, is means

$$\sum_{i=m}^{n} f(i) = f(m) + f(m+1) + f(m+2) + \dots + f(n)$$

Examples:
$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n$$
$$\sum_{i=1}^{n} i^{2} = 1^{2} + 2^{2} + 3^{2} + \dots + n^{2}$$
$$\sum_{i=1}^{n} \sin(i) = \sin(1) + \sin(2) + \sin(3) + \dots + \sin(n)$$
$$\sum_{i=0}^{n-1} x^{i} = 1 + x + x^{2} + x^{2} + x^{3} + x^{4} + \dots + x^{n-1}$$

The Area Problem Revisited

Upper Riemann Sum
$$= \sum_{i=1}^{n} M_i \Delta x$$

Lower Riemann Sum $= \sum_{i=1}^{n} m_i \Delta x$,

where M_i and m_i are, respectively, the maximum and minimum values of f on the *i*th subinterval $[x_{i-1}, x_i]$, $1 \le i \le n$.

Example

Use an Upper Riemann Sum and a Lower Riemann Sum, first with 8, then with 100 subintervals of equal length to approximate the area under the graph of $y = f(x) = x^2$ on the interval [0, 1].

The Definite Integral

We say that f is integrable on [a, b] if there exists a number A such that

Lower Riemann Sum $\leq A \leq$ Upper Riemann Sum

for all n. We write the number as

$$A = \int_a^b f(x) dx$$

and call it the **definite integral** of f over [a, b].

Trickiness: Who wants to find maxima/minima over every interval? Especially as $n \rightarrow \infty$? Calculus nightmare!!

More Riemann Sums

Let f be defined on [a, b], and pick a positive integer n. Let

$$\Delta x = \frac{b-a}{n}$$

Notice:

x + 0 = a, $x_1 = a + \Delta x$, $x_2 = a + 2\Delta x$, $x_3 = a + 3\Delta x$,... So let

$$x_i = a + i * \Delta x.$$

More Riemann Sums

Let f be defined on [a, b], and pick a positive integer n. Let

$$\Delta x = \frac{b-a}{n} \qquad \text{and} \qquad$$

 $x_i = a + i * \Delta x.$

Then the Right Riemann Sum is

and the Left Riemann Sum is

$$\sum_{i=0}^{n-1} f(x_i) \Delta x_i.$$

Integrals made easier

Theorem

If f is continuous on [a, b], then f is Riemann integrable on [a, b].

Theorem

If f is Riemann integrable on [a, b], then

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(c_i) \Delta x_i$$

where c_i is any point in the interval $[x_{i-1}, x_i]$.

Punchline: (1) Every continuous function has an integral, and (2) we can get there by just using right or left sums! (instead of upper or lower sums)

Properties of the Definite Integral

$$1. \int_a^a f(x) dx = 0.$$

- 2. If f is integrable and

 - (a) f(x) ≥ 0 on [a, b], then ∫_a^b f(x)dx equals the area of the region under the graph of f and above the interval [a, b];
 (b) f(x) ≤ 0 on [a, b], then ∫_a^b f(x)dx equals the **negative** of the area of the region between the interval [a, b] and the graph of f.

3.
$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx.$$

5. If f is an **even** function, then

6. If f is an **odd** function, then

Example

Mean Value Theorem for Definite Integrals

Theorem

Let f be continuous on the interval [a, b]. Then there exists c in [a, b] such that

$$\int_{a}^{b} f(x) dx = (b - a) f(c)$$

Definition

The average value of a continuous function on the interval [a, b] is

$$\frac{1}{b-a}\int_a^b f(x)dx.$$