Modelling Accumulations

The purpose of calculus is twofold:

1. to find how something is changing, given what it's doing;
2. to find what something is doing, given how it's changing.

We did derivatives
(a) algebraically (derivative rules, what is the function?), and
(b) geometrically (slopes, increasing/decreasing, what does it look like?)
We did antiderivatives algebraically (what is the function?).
Today: geometric meaning of antiderivatives.

If you travel at 2 mph for 4 hours, how far have you gone?

If you travel at 2 mph for 4 hours, how far have you gone?

Answer: 8 miles.

If you travel at 2 mph for 4 hours, how far have you gone?

Answer: 8 miles.
Another way:

(graph of speed, i.e. graph of derivative)

If you travel at 2 mph for 4 hours, how far have you gone?

Answer: 8 miles.
Another way: Area $=8$

(graph of speed, i.e. graph of derivative)

If you travel at 1 mph for 2 hours, and 2 mph for 2 hours, how far have you gone?

(graph of speed, i.e. graph of derivative)

If you travel at

> .5 mph for 1 hour,
> 1 mph for 1 hour,
> 1.5 mph for 1 hour,
> 2 mph for 1 hour,
how far have you gone?

(graph of speed, i.e. graph of derivative)

If you travel at
.175 mph for $1 / 4$ hour, .25 mph for $1 / 4$ hour,

2 mph for $1 / 4$ hour,
how far have you gone?

(graph of speed, i.e. graph of derivative)

If you travel at $\frac{1}{2} t \mathrm{mph}$ for 4 hours, how far have you gone?

If you travel at $\frac{1}{2} t \mathrm{mph}$ for 4 hours, how far have you gone?
Check our answer using antiderivatives from last time:

$$
\text { position }=s(t)=\int \frac{1}{2} t d t=\frac{1}{4} t^{2}+C
$$

So distance $=s(4)-s(0)=\frac{1}{4} * 16+C-\left(\frac{1}{4} * 0+C\right)=4 \checkmark$

$$
\text { Area }=4 \text { (it's a triangle) }
$$

(graph of speed, i.e. graph of derivative)

Choose another sequence of speeds:

Choose another sequence of speeds:

Choose another sequence of speeds:

Choose another sequence of speeds:

Choose another sequence of speeds:

Choose another sequence of speeds:

Choose another sequence of speeds:

Estimate the area under the curve $y=\frac{1}{8} x^{2}$ between $x=0$ and $x=4$:

Estimate the area under the curve

 $y=\frac{1}{8} x^{2}$ between $x=0$ and $x=4$:Estimate 1: pick the highest point
Area ≈ 8

Estimate the area under the curve

$y=\frac{1}{8} x^{2}$ between $x=0$ and $x=4$:

Estimate 2: pick two points
Area $\approx 1+4=5$

Estimate the area under the curve

$y=\frac{1}{8} x^{2}$ between $x=0$ and $x=4$:

Estimate 3: pick four points
Area $\approx \frac{1}{8}+\frac{1}{2}+\frac{9}{8}+2=3.75$

Estimate the area under the curve

$y=\frac{1}{8} x^{2}$ between $x=0$ and $x=4$:

Estimate 4: pick eight points

Estimate the area under the curve

 $y=\frac{1}{8} x^{2}$ between $x=0$ and $x=4$:Estimate 5: pick sixteen points Area ≈ 2.921875

Estimate the area under the curve

$y=\frac{1}{8} x^{2}$ between $x=0$ and $x=4$:

Estimate 6: pick thirty two points
Area ≈ 2.79296875

Estimating the Area of a Circle with $r=1$

Estimating the Area of a Circle with $r=1$
Divide it up into rectangles:

Estimating the Area of a Circle with $r=1$
Divide it up into rectangles:

Estimating the Area of a Circle with $r=1$

Divide it up into rectangles:
Estimate area of the half circle $\left(f(x)=\sqrt{1-x^{2}}\right)$ and mult. by 2 .

Estimating the Area of a Circle with $r=1$

Divide it up into rectangles:
Estimate area of the half circle $\left(f(x)=\sqrt{1-x^{2}}\right)$ and mult. by 2 .

Estimating the Area of a Circle with $r=1$

Divide it up into rectangles:
Estimate area of the half circle $\left(f(x)=\sqrt{1-x^{2}}\right)$ and mult. by 2 .

Estimating the Area of a Circle with $r=1$

Divide it up into rectangles:
Estimate area of the half circle $\left(f(x)=\sqrt{1-x^{2}}\right)$ and mult. by 2 .

Estimating the Area of a Circle with $r=1$

Divide it up into rectangles:
Estimate area of the half circle $\left(f(x)=\sqrt{1-x^{2}}\right)$ and mult. by 2 .

Estimating the Area of a Circle with $r=1$

Divide it up into rectangles:
Estimate area of the half circle $\left(f(x)=\sqrt{1-x^{2}}\right)$ and mult. by 2 .

Estimating the Area of a Circle with $r=1$

Divide it up into rectangles:
Estimate area of the half circle $\left(f(x)=\sqrt{1-x^{2}}\right)$ and mult. by 2 .

Estimating the Area of a Circle with $r=1$

Divide it up into rectangles:
Estimate area of the half circle $\left(f(x)=\sqrt{1-x^{2}}\right)$ and mult. by 2 .

Estimating the Area of a Circle with $r=1$

Divide it up into rectangles:
Estimate area of the half circle $\left(f(x)=\sqrt{1-x^{2}}\right)$ and mult. by 2 .

Numerical Integration

Big idea: Estimating, and then taking a limit.

Let the number of pieces go to ∞
i.e. let the base of the rectangle for to 0 .

Good for:

1. Approximating accumulated change when the antiderivative is unavailable.
2. Making precise the notion of 'area' (we'll also to lengths and volumes)

Example: estimating volume using data

A small dam breaks on a river. The average flow out of the stream is given by the following:

hours	m^{3} / s	hours	m^{3} / s	hours	m^{3} / s
0	150	4.25	1460	8.25	423
0.25	230	4.5	1350	8.5	390
0.5	310	4.75	1270	8.75	365
0.75	430	5	1150	9	325
1	550	5.25	1030	9.25	300
1.25	750	5.5	950	9.5	280
1.5	950	5.75	892	9.75	260
1.75	1150	6	837	10	233
2	1350	6.25	770	10.25	220
2.25	1550	6.5	725	10.5	199
2.5	1700	6.75	658	10.75	188
2.75	1745	7	610	11	180
3	1750	7.25	579	11.25	175
3.25	1740	7.5	535	11.5	168
3.5	1700	7.75	500	11.75	155
3.75	1630	8	460	12	150
4	1550				

Example: estimating volume using data

A small dam breaks on a river. The average flow out of the stream is given by the following:

Over each time interval, we estimate the volume of water by
Average rate $\times 900$ s

Over each time interval, we estimate the volume of water by Average rate $\times 900$ s

Over each time interval, we estimate the volume of water by Average rate $\times 900 \mathrm{~s}$

hours	m^{3}	hours	m^{3}	hours	m^{3}
0	135000	4.25	1314000	8.25	380700
0.25	207000	4.5	1215000	8.5	351000
0.5	279000	4.75	1143000	8.75	328500
0.75	387000	5	1035000	9	292500
1	495000	5.25	927000	9.25	270000
1.25	675000	5.5	855000	9.5	252000
1.5	855000	5.75	802800	9.75	234000
1.75	1035000	6	753300	10	209700
2	1215000	6.25	693000	10.25	198000
2.25	1395000	6.5	652500	10.5	179100
2.5	1530000	6.75	592200	10.75	169200
2.75	1570500	7	549000	11	162000
3	1575000	7.25	521100	11.25	157500
3.25	1566000	7.5	481500	11.5	151200
3.5	1530000	7.75	450000	11.75	139500
3.75	1467000	8	414000	12	135000
4	1395000			total $=33,319,800$	

Example: estimating volume under a function of 2 variables

A tent is raised and has height given by $x y$ over the 2×2 grid where $0<x<2$ and $0<y<2$. What is the volume of the tent?

Example: estimating volume under a function of 2 variables

A tent is raised and has height given by $x y$ over the 2×2 grid where $0<x<2$ and $0<y<2$. What is the volume of the tent?

Estimate via boxes!
Volume $=$ base ${ }^{*}$ height.

x	y	height $=x y$	volume
0	0	0	$0^{*} 1$
0	1	0	$0^{*} 1$
1	0	0	$0^{*} 1$
1	1	1	$1^{*} 1$

total volume ≈ 1

Example: estimating volume under a function of 2 variables

A tent is raised and has height given by $x y$ over the 2×2 grid where $0<x<2$ and $0<y<2$. What is the volume of the tent?

Estimate via boxes!
Volume $=$ base *height.

x	y	height $=x y$	volume
1	1	1	$1^{*} 1$
1	2	2	$2 * 1$
2	1	2	$2 * 1$
2	2	4	$4 * 1$

total volume ≈ 9

Example: estimating volume under a function of 2 variables

A tent is raised and has height given by $x y$ over the 2×2 grid where $0<x<2$ and $0<y<2$. What is the volume of the tent?

Estimate via boxes!
Volume $=$ base $*$ height.

x	y	height $=x y$	volume
.5	.5	.25	$.5 * 1$
.5	1.5	.75	$.75 * 1$
1.5	.5	.75	$.75 * 1$
1.5	1.5	2.25	$2.25 * 1$

total volume ≈ 4.25

Example: functions without nice antiderivatives

What is $\int e^{-x^{2}} d x$? WolframAlpha conmuatonadion

Enter what you want to calculate or know about:

```
    int e^^(-x^2) dx
```

 \(\equiv\) Examples \(\sim \sim\) Random
 Indefinite integral:

$$
\int e^{-x^{2}} d x=\frac{1}{2} \sqrt{\pi} \operatorname{erf}(x)+\text { constant }
$$

Plots of the integral:

From Wikipedia: "In mathematics, the error function (also called the Gauss error function) is a special function (non-elementary) of sigmoid shape which occurs in probability, statistics and partial differential equations. "

Other methods of numerical integration

We did rectangles, but we could use other shapes (that we know how to integrate under) to better represent the shape of the function.

$$
f(x)=e^{-x^{2}} \text { between } x=-2 \text { and } x=2
$$

For n pieces,

Other methods of numerical integration

We did rectangles, but we could use other shapes (that we know how to integrate under) to better represent the shape of the function.

$$
f(x)=e^{-x^{2}} \text { between } x=-2 \text { and } x=2
$$

For n pieces, for rectangles pick n points to draw n rectangles;

Other methods of numerical integration

We did rectangles, but we could use other shapes (that we know how to integrate under) to better represent the shape of the function.

$$
f(x)=e^{-x^{2}} \text { between } x=-2 \text { and } x=2
$$

For n pieces,
for rectangles pick n points to draw n rectangles; $A \approx 1.75407$

Other methods of numerical integration

We did rectangles, but we could use other shapes (that we know how to integrate under) to better represent the shape of the function.

$$
f(x)=e^{-x^{2}} \text { between } x=-2 \text { and } x=2
$$

For n pieces,
for rectangles pick n points to draw n rectangles; $A \approx 1.75407$ we could also use trapezoids, with $n+1$ points;

Other methods of numerical integration

We did rectangles, but we could use other shapes (that we know how to integrate under) to better represent the shape of the function.

$$
f(x)=e^{-x^{2}} \text { between } x=-2 \text { and } x=2
$$

For n pieces,
for rectangles pick n points to draw n rectangles; $A \approx 1.75407$ we could also use trapezoids, with $n+1$ points;

Other methods of numerical integration

We did rectangles, but we could use other shapes (that we know how to integrate under) to better represent the shape of the function.

$$
f(x)=e^{-x^{2}} \text { between } x=-2 \text { and } x=2
$$

For n pieces,
for rectangles pick n points to draw n rectangles; $A \approx 1.75407$
we could also use trapezoids, with $n+1$ points; $A \approx 1.75407$

Other methods of numerical integration

We did rectangles, but we could use other shapes (that we know how to integrate under) to better represent the shape of the function.

$$
f(x)=e^{-x^{2}} \text { between } x=-2 \text { and } x=2
$$

For n pieces,
for rectangles pick n points to draw n rectangles; $A \approx 1.75407$ we could also use trapezoids, with $n+1$ points; $A \approx 1.75407 \ldots$
we could also use parabolas, with $2 n+1$ points; (We call the parabolas Simpson's rule)

Other methods of numerical integration

We did rectangles, but we could use other shapes (that we know how to integrate under) to better represent the shape of the function.

$$
f(x)=e^{-x^{2}} \text { between } x=-2 \text { and } x=2
$$

For n pieces,
for rectangles pick n points to draw n rectangles; $A \approx 1.75407$ we could also use trapezoids, with $n+1$ points; $A \approx 1.75407 \ldots$
we could also use parabolas, with $2 n+1$ points; (We call the parabolas Simpson's rule)

Other methods of numerical integration

We did rectangles, but we could use other shapes (that we know how to integrate under) to better represent the shape of the function.

$$
f(x)=e^{-x^{2}} \text { between } x=-2 \text { and } x=2
$$

For n pieces,
for rectangles pick n points to draw n rectangles; $A \approx 1.75407$ we could also use trapezoids, with $n+1$ points; $A \approx 1.75407 \ldots$
we could also use parabolas, with $2 n+1$ points; (We call the parabolas Simpson's rule)

Other methods of numerical integration

We did rectangles, but we could use other shapes (that we know how to integrate under) to better represent the shape of the function.

$$
f(x)=e^{-x^{2}} \text { between } x=-2 \text { and } x=2
$$

For n pieces,
for rectangles pick n points to draw n rectangles; $A \approx 1.75407$ we could also use trapezoids, with $n+1$ points; $A \approx 1.75407 \ldots$
we could also use parabolas, with $2 n+1$ points; (We call the parabolas Simpson's rule)

Other methods of numerical integration

We did rectangles, but we could use other shapes (that we know how to integrate under) to better represent the shape of the function.

$$
f(x)=e^{-x^{2}} \text { between } x=-2 \text { and } x=2
$$

For n pieces,
for rectangles pick n points to draw n rectangles; $A \approx 1.75407$
we could also use trapezoids, with $n+1$ points; $A \approx 1.75407 \ldots$
we could also use parabolas, with $2 n+1$ points; (We call the parabolas Simpson's rule)

Other methods of numerical integration

We did rectangles, but we could use other shapes (that we know how to integrate under) to better represent the shape of the function.

$$
f(x)=e^{-x^{2}} \text { between } x=-2 \text { and } x=2
$$

For n pieces,
for rectangles pick n points to draw n rectangles; $A \approx 1.75407$ we could also use trapezoids, with $n+1$ points; $A \approx 1.75407 \ldots$
we could also use parabolas, with $2 n+1$ points; (We call the parabolas Simpson's rule)

Other methods of numerical integration

We did rectangles, but we could use other shapes (that we know how to integrate under) to better represent the shape of the function.

$$
f(x)=e^{-x^{2}} \text { between } x=-2 \text { and } x=2
$$

For n pieces,
for rectangles pick n points to draw n rectangles; $A \approx 1.75407$
we could also use trapezoids, with $n+1$ points; $A \approx 1.75407 \ldots$
we could also use parabolas, with $2 n+1$ points; (We call the parabolas Simpson's rule)

Other methods of numerical integration

We did rectangles, but we could use other shapes (that we know how to integrate under) to better represent the shape of the function.

$$
f(x)=e^{-x^{2}} \text { between } x=-2 \text { and } x=2
$$

For n pieces,
for rectangles pick n points to draw n rectangles; $A \approx 1.75407$ we could also use trapezoids, with $n+1$ points; $A \approx 1.75407 \ldots$
we could also use parabolas, with $2 n+1$ points; (We call the parabolas Simpson's rule)

Other methods of numerical integration

We did rectangles, but we could use other shapes (that we know how to integrate under) to better represent the shape of the function.

$$
f(x)=e^{-x^{2}} \text { between } x=-2 \text { and } x=2
$$

For n pieces,
for rectangles pick n points to draw n rectangles; $A \approx 1.75407$ we could also use trapezoids, with $n+1$ points; $A \approx 1.75407 \ldots$
we could also use parabolas, with $2 n+1$ points; (We call the parabolas Simpson's rule)

Other methods of numerical integration

We did rectangles, but we could use other shapes (that we know how to integrate under) to better represent the shape of the function.

$$
f(x)=e^{-x^{2}} \text { between } x=-2 \text { and } x=2
$$

For n pieces,
for rectangles pick n points to draw n rectangles; $A \approx 1.75407$ we could also use trapezoids, with $n+1$ points; $A \approx 1.75407 \ldots$
we could also use parabolas, with $2 n+1$ points; (We call the parabolas Simpson's rule)

Other methods of numerical integration

We did rectangles, but we could use other shapes (that we know how to integrate under) to better represent the shape of the function.

$$
f(x)=e^{-x^{2}} \text { between } x=-2 \text { and } x=2
$$

$$
A=1.76416 \ldots
$$

For n pieces,
for rectangles pick n points to draw n rectangles; $A \approx 1.75407$
we could also use trapezoids, with $n+1$ points; $A \approx 1.75407$
we could also use parabolas, with $2 n+1$ points; (We call the parabolas Simpson's rule)

Other methods of numerical integration

We did rectangles, but we could use other shapes (that we know how to integrate under) to better represent the shape of the function.

$$
f(x)=e^{-x^{2}} \text { between } x=-2 \text { and } x=2
$$

For n pieces,
for rectangles pick n points to draw n rectangles; $A \approx 1.75407$ we could also use trapezoids, with $n+1$ points; $A \approx 1.75407 \ldots$ we could also use parabolas, with $2 n+1$ points; $A \approx 1.76362 \ldots$ (We call the parabolas Simpson's rule)

What you need to know

* For rectangles, know how to approximate by hand.

What you need to know

* For rectangles, know how to approximate by hand.
* For trapezoids, also know by hand:

What you need to know

* For rectangles, know how to approximate by hand.
* For trapezoids, also know by hand:

What you need to know

* For rectangles, know how to approximate by hand.
* For trapezoids, also know by hand:

What you need to know

* For rectangles, know how to approximate by hand.
* For trapezoids, also know by hand:

What you need to know

* For rectangles, know how to approximate by hand.
* For trapezoids, also know by hand:

What you need to know

* For rectangles, know how to approximate by hand.
* For trapezoids, also know by hand:

Area (trapeziod) $=b * \frac{h_{1}+h_{2}}{2}$
For example: $\quad b=1, \quad h_{1}=f(-1), \quad h_{2}=f(0)$, so $A_{2}=1 * \frac{f(-1)+f(0)}{2}$
$A=1 * \frac{f(-2)+f(-1)}{2}+1 * \frac{f(-1)+f(0)}{2}+1 * \frac{f(0)+f(1)}{2}+1 * \frac{f(1)+f(2)}{2}$

What you need to know

* For rectangles, know how to approximate by hand.
* For trapezoids, also know by hand:

Area (trapeziod) $=b * \frac{h_{1}+h_{2}}{2}$
For example: $\quad b=1, \quad h_{1}=f(-1), \quad h_{2}=f(0)$, so $A_{2}=1 * \frac{f(-1)+f(0)}{2}$

$$
\begin{aligned}
& A=1 * \frac{f(-2)+f(-1)}{2}+1 * \frac{f(-1)+f(0)}{2}+1 * \frac{f(0)+f(1)}{2}+1 * \frac{f(1)+f(2)}{2} \\
= & \frac{1}{2} *[f(-2)+f(-1)+f(-1)+f(0)+f(0)+f(1)+f(1)+f(2)]
\end{aligned}
$$

What you need to know

* For rectangles, know how to approximate by hand.
* For trapezoids, also know by hand:

Area (trapeziod $)=b * \frac{h_{1}+h_{2}}{2}$
For example: $\quad b=1, \quad h_{1}=f(-1), \quad h_{2}=f(0)$, so $A_{2}=1 * \frac{f(-1)+f(0)}{2}$

$$
\begin{aligned}
& A=1 * \frac{f(-2)+f(-1)}{2}+1 * \frac{f(-1)+f(0)}{2}+1 * \frac{f(0)+f(1)}{2}+1 * \frac{f(1)+f(2)}{2} \\
= & \frac{1}{2} *\left[f(-2)+f(-1)+f(-1)^{2}+f(0)+f(0)^{2}+f(1)+f(1)+f(2)\right]
\end{aligned}
$$

What you need to know

* For rectangles, know how to approximate by hand.
* For trapezoids, also know by hand:

Area (trapeziod) $=b * \frac{h_{1}+h_{2}}{2}$
For example: $\quad b=1, \quad h_{1}=f(-1), \quad h_{2}=f(0)$, so $A_{2}=1 * \frac{f(-1)+f(0)}{2}$
$A=1 * \frac{f(-2)+f(-1)}{2}+1 * \frac{f(-1)+f(0)}{2}+1 * \frac{f(0)+f(1)}{2}+1 * \frac{f(1)+f(2)}{2}$
$=\frac{1}{2} *[f(-2)+f(2)+2(f(-1)+f(0)+f(1))]$
(see book for general form)

What you need to know

* For rectangles, know how to approximate by hand.
* For trapezoids, also know by hand:

$\begin{gathered}\text { Area (trapeziod) }=b * \frac{h_{1}+h_{2}}{2} \\ \text { For example: } \quad b=1, \quad h_{1}=f(-1), \quad h_{2}=f(0), \\ \text { so } A_{2}=1 * \frac{f(-1)+f(0)}{2}\end{gathered}$
$A=1 * \frac{f(-2)+f(-1)}{2}+1 * \frac{f(-1)+f(0)}{2}+1 * \frac{f(0)+f(1)}{2}+1 * \frac{f(1)+f(2)}{2}$
$=\frac{1}{2} *[f(-2)+f(2)+2(f(-1)+f(0)+f(1))]$ (see book for general form)
* For Simpson's rule (parabolas), know how to use applet.

Warning about conventions: In the book and webwork, n is the number of "subintervals". In class and in the applet, n is the number of parabolas. So if webwork says $n=6$, plug in $n=3$ to the applet.

