Optimization

Warm up

Sketch the graph of

$$
f(x)=(x-3)(x-2)(x-1)=x^{3}-6 x^{2}+11 x-6
$$

over the interval $[1,4]$. Mark any critical points and inflection points. What is the absolute maximum over this interval? What is the absolute minimum over this interval?
[useful value: $\sqrt{3} / 3 \approx .6$]

Warm up

Sketch the graph of

$$
f(x)=(x-3)(x-2)(x-1)=x^{3}-6 x^{2}+11 x-6
$$

over the interval $[1,4]$. Mark any critical points and inflection points. What is the absolute maximum over this interval? What is the absolute minimum over this interval? [useful value: $\sqrt{3} / 3 \approx .6$]

$$
f^{\prime}(x)=3 x^{2}-12 x+11=3(x-(2-\sqrt{3} / 3))(x-(2+\sqrt{3} / 3))
$$

$$
f^{\prime \prime}(x)=6 x-12=6(x-2)
$$

$$
\begin{aligned}
& f(2-\sqrt{3} / 3) \approx 0.385 \\
& f(2+\sqrt{3} / 3) \approx-0.385 \\
& f(1)=0 \\
& f(4)=6
\end{aligned}
$$

Suppose you want to fence off a garden, and you have 100 m of fence. What is the largest area that you can fence off?

Suppose you want to fence off a garden, and you have 100 m of fence. What is the largest area that you can fence off?

Get it into math:

$$
\text { Know: } \quad 2 x+2 y=100 \quad \text { Want: } \quad \text { Maximize } A=x y
$$

Suppose you want to fence off a garden, and you have 100 m of fence. What is the largest area that you can fence off?

Get it into math:

$$
\text { Know: } \quad 2 x+2 y=100 \quad \text { Want: } \quad \text { Maximize } A=x y
$$

Problem: The area, $x y$, is a function of two variables!!

Suppose you want to fence off a garden, and you have 100 m of fence. What is the largest area that you can fence off?

Get it into math:

$$
\text { Know: } \quad 2 x+2 y=100 \quad \text { Want: Maximize } A=x y
$$

Problem: The area, $x y$, is a function of two variables!! Strategy: Use the first equation to get $x y$ into one variable: Solve $2 x+2 y=100$ (the "constraint") and plug into $x y$ (the function you want to optimize).

Suppose you want to fence off a garden, and you have 100 m of fence. What is the largest area that you can fence off?

Get it into math:

$$
\text { Know: } \quad 2 x+2 y=100 \quad \text { Want: Maximize } A=x y
$$

Problem: The area, $x y$, is a function of two variables!! Strategy: Use the first equation to get $x y$ into one variable: Solve $2 x+2 y=100$ (the "constraint") and plug into $x y$ (the function you want to optimize).

$$
2 x+2 y=100 \quad \Longrightarrow \quad y=50-x
$$

so $x y=x(50-x)=50 x-x^{2}$.

Suppose you want to fence off a garden, and you have 100 m of fence. What is the largest area that you can fence off?

Get it into math:

$$
\text { Know: } \quad 2 x+2 y=100 \quad \text { Want: Maximize } A=x y
$$

Problem: The area, $x y$, is a function of two variables!!
Strategy: Use the first equation to get $x y$ into one variable: Solve $2 x+2 y=100$ (the "constraint") and plug into $x y$ (the function you want to optimize).

$$
2 x+2 y=100 \quad \Longrightarrow \quad y=50-x
$$

so $x y=x(50-x)=50 x-x^{2}$.
Domain: $0 \leq x \leq 50$

New problem: Maximize $A(x)=50 x-x^{2}$ over the interval $0<x<50$.

New problem: Maximize $A(x)=50 x-x^{2}$ over the interval $0<x<50$.

Solution. . .

Three strategies:
(1) First derivative test:
(2) Pretend we're on a closed interval, then throw out the endpoints:
(3) Second derivative test:

New problem: Maximize $A(x)=50 x-x^{2}$ over the interval $0<x<50$.

Solution: $\quad A^{\prime}(x)=50-2 x$
So the only critical point is when $50-2 x=0$, so $x=25$.
Three strategies:
(1) First derivative test:

(2) Pretend we're on a closed interval, then throw out the endpoints:

x	$A(x)$	
25	625	$\operatorname{max!}$
0	0	min
50	0	min

Since the maximum is not at one of the points I have to throw out, it must me a maximum on the open interval (there is no absolute minimum over the open interval $(0,50)$).
(3) Second derivative test:

$$
A^{\prime \prime}(x)=-2<0 \text { so } A(25)=625 \text { must be a maximum. }
$$

Now suppose, instead, you want to divide your plot up into three equal parts:

If you still only have 100 m of fence, what is the largest area that you can fence off?

Now suppose, instead, you want to divide your plot up into three equal parts:

If you still only have 100 m of fence, what is the largest area that you can fence off?
Solution:
Constraint: $2 x+4 y=100$, so $y=25-\frac{1}{2} x$.
Maximize: $A=x y$ over $0<x<50$.
Plug in constraint: $A(x)=x(25-x / 2)=25 x-x^{2} / 2$
Find critical points: $0=A^{\prime}(x)=25-x$, so $x=25$.
Second derivative test: $A^{\prime \prime}(x)=-1<0$ so $A(25)=25 * 12.5$ is a maximum.

Suppose you want to make a can which holds about 16 ounces (28.875 $\left.\mathrm{in}^{3}\right)$. If the material for the top and bottom of the can costs $4 \mathrm{c} / \mathrm{in}^{2}$ and the material for the sides of the can costs $3 ¢ / \mathrm{in}^{2}$. What is the minimum cost for the can?

Suppose you want to make a can which holds about 16 ounces (28.875 $\left.\mathrm{in}^{3}\right)$. If the material for the top and bottom of the can costs $4 \mathrm{c} / \mathrm{in}^{2}$ and the material for the sides of the can costs $3 ¢ / \mathrm{in}^{2}$. What is the minimum cost for the can?

Put into math:
Constraint: $V=\pi r^{2} h=28.875$.
Cost: $4 *$ (SA of top + bottom) $+3 *$ (SA of side)

Suppose you want to make a can which holds about 16 ounces (28.875 in^{3}). If the material for the top and bottom of the can costs $4 \phi / \mathrm{in}^{2}$ and the material for the sides of the can costs $3 ¢ / \mathrm{in}^{2}$. What is the minimum cost for the can?

Suppose you want to make a can which holds about 16 ounces (28.875 $\left.\mathrm{in}^{3}\right)$. If the material for the top and bottom of the can costs $4 \mathrm{c} / \mathrm{in}^{2}$ and the material for the sides of the can costs $3 \oint / \mathrm{in}^{2}$. What is the minimum cost for the can?

Suppose you want to make a can which holds about 16 ounces (28.875 in^{3}). If the material for the top and bottom of the can costs $4 \mathrm{\phi} / \mathrm{in}^{2}$ and the material for the sides of the can costs $3 \oint / \mathrm{in}^{2}$. What is the minimum cost for the can?

Get into one variable: Use the constraint!
$\pi r^{2} h=28.875 \Longrightarrow h=\frac{28.875}{\pi} r^{-2}$

Suppose you want to make a can which holds about 16 ounces (28.875 in^{3}). If the material for the top and bottom of the can costs $4 \mathrm{\phi} / \mathrm{in}^{2}$ and the material for the sides of the can costs $3 \oint / \mathrm{in}^{2}$. What is the minimum cost for the can?

Get into one variable: Use the constraint!

$$
\pi r^{2} h=28.875 \Longrightarrow h=\frac{28.875}{\pi} r^{-2} \Longrightarrow C(r)=8 \pi r^{2}+6 \pi r\left(\frac{28.875}{\pi} r^{-2}\right)
$$

So

$$
C(r)=8 \pi r^{2}+6 * 28.875 r^{-1}
$$

Suppose you want to make a can which holds about 16 ounces (28.875 in^{3}). If the material for the top and bottom of the can costs $4 \mathrm{\phi} / \mathrm{in}^{2}$ and the material for the sides of the can costs $3 \oint / \mathrm{in}^{2}$. What is the minimum cost for the can?

Get into one variable: Use the constraint!

$$
\pi r^{2} h=28.875 \Longrightarrow h=\frac{28.875}{\pi} r^{-2} \Longrightarrow C(r)=8 \pi r^{2}+6 \pi r\left(\frac{28.875}{\pi} r^{-2}\right)
$$

So

$$
C(r)=8 \pi r^{2}+6 * 28.875 r^{-1}
$$

(Domain: $r>0$)

New problem: Minimize $C(r)=8 \pi r^{2}+6 * 28.875 r^{-1}$ for $r>0$.
[hint: If you don't have a calculator, use the second derivative test!]

New problem: Minimize $C(r)=8 \pi r^{2}+6 * 28.875 r^{-1}$ for $r>0$.
[hint: If you don't have a calculator, use the second derivative test!] Solution: $(6 * 28.875=173.25)$

$$
C^{\prime}(r)=16 \pi r-173.25 r^{-2}=\frac{1}{r^{2}}\left(16 \pi r^{3}-173.25\right)
$$

Critical point: $C^{\prime}(r)=\sqrt[3]{\frac{173.25}{16 \pi}} \approx 1.031$
Second derivative test: $C^{\prime \prime}(r)=16 \pi+173.25 r^{-3}>0$ when $r>0$,
so $C(r)$ is concave up, and so $C\left(\sqrt[3]{\frac{173.25}{16 \pi}}\right)$ is a minimum.
Minimal value: $C\left(\sqrt[3]{\frac{173.25}{16 \pi}}\right) \approx 80.2041$ ¢

