
Curve Sketching



Warm up
Below are pictured six functions: f , f ′, f ′′, g , g ′, and g ′′. Pick out
the two functions that could be f and g , and match them to their
first and second derivatives, respectively.
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Review: Increasing/Decreasing
Suppose that f is continuous on [a, b] and differentiable on the
open interval (a, b) . Then

If f ′(x) is

positive
negative

zero

 for every x in (a, b) then f is

 increasing
decreasing
constant

 on [a, b].

What it looks like:

Decreasing IncreasingConstant

f'(x)<0 f'(x)>0f'(x)=0



Review: Extreme values

If f is continuous on a closed interval [a, b], then there is a point in
the interval where f is largest (maximized) and a point where f is
smallest (minimized).

The maxima or minima will happen either

1. at an endpoint, or

2. at a critical point, a point c where f ′(c) = 0 or f ′(c) is
undefined.
Vocab: If f ′(c) is undefined, c is also called a singular point.

Absolute min

Absolute max

Local min Local min

Local max
Local max
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Review: finding absolute min/max on closed intervals

1. Calculate f ′(x).

2. Find where f ′(x) is 0 or undefined on [a, b] (critical/singular points).

3. Evaluate f (x) at the critical and singular points, and at endpoints.
The largest (reps. smallest) value among these is the maximum
(reps. minimum).

Example: Let f (x) = x3 − 3x . What are the min/max values on
the interval [0, 2].

f ′(x) = 3x2 − 3 = 3(x + 1)(x − 1)

So f ′(x) = 0 if x = −1 or .

x f (x)

1 −2
0 0
2 2

critical points
end points 1 2
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Finding local min/max on any intervals

Warning: Not all critical points are local minima or maxima:

Example: If f (x) = x3, then f ′(x) = 3x2, and so f ′(0) = 0:
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Finding local extrema: The First Derivative Test

Suppose

f is continuous on (a, b),

c is in (a, b) and is a critical point of f (x), and

f is differentiable on (a, b) (except possibly at x = c)

Then the value f (c) can be classified as follows:

1. If f ′(x) changes from positive → negative at x = c , then
f (c) is a local maximum.

f'<0f'>0

2. If f ′(x) changes from negative → positive at x = c , then
f (c) is a local minimum.

f'<0 f'>0

3. If f ′(x) doesn’t change sign, then it’s neither a min or a max.



Example
Find the local extrema of f (x) = 3x4 + 4x3 − x2 − 2x over the
whole real line.

Calculate f ′(x):

f ′(x) = 12x3 + 12x2 − 2x − 2 = 12(x + 1)(x − 1/
√

6)(x + 1/
√

6)
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Example

Find the local extrema of f (x) =
x4 + 1

x2
over the whole real line.

[Hint: Make sure to write the derivative like f ′(x) = p(x)
q(x) , where

p(x) and q(x) are polynomials.]



Concavity

Q. How can we measure when a function is concave up or down?

Concave up Concave down
f ′(x) is increasing f ′(x) is decreasing

f ′′(x) > 0 f ′′(x) < 0
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Concavity and Inflection Points

Definition: The function f has an inflection point at the point
x = c if f (c) exists and the concavity changes at x = c from up to
down or vice versa.

Concavity and Inflection Points

Def: The function f has an inflection point at the point x = c if
it has a tangent line at x = c (e.g., f 0(c) exists) and the concavity
changes at x = c from up to down or vice versa.

Math 3 Calculus - Winter 2010 - Professor Trout 17



Back to the example f (x) = 3x4 + 4x3 − x2 − 2x
Find the inflection points of f (x), and where f (x) is concave up or
down.

We calculated f ′(x) = 12x3 + 12x2 − 2x − 2.
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min

min
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So

f ′′(x) = 36x2 + 24x − 2 = (6x − (
√

6 + 2))(6x +
√

6 + 2)
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What the pieces look like

concave up concave up
and increasing and decreasing

concave down concave down
and increasing and decreasing



Putting it together
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Last elements of graphing

Back to the example where f (x) = x4+1
x2

:

Step 0: Domain. f (x) is defined everywhere except x = 0
Step 1: Increasing/decreasing.

We found f ′(x) = 2(x4−1)
x3

= 2 (x2+1)(x+1)(x−1)
x3

-2 -1 0 1 2

0 0---UND+++ +++

---

---

Step 2: Concavity.

f ′′(x) =

2
(4x3)(x3)− (x4 − 1)(3x2)

x6
= 2

4x6 − 3x6 + 3x2

x6
= 2

x4 + 3

x4

Therefore f ′′(x) is always positive, but is undef. at 0.
So f (x) is always concave up
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Last elements of graphing
f (x) = x4+1

x2 continued. . .

Step 4: Extreme behavior.

(a) What is limx→−∞ f (x)? What is limx→∞ f (x)?
Are there any horizontal asymptotes?

For example, lim
x→−∞

x4 + 1

x2
=∞ lim

x→∞
x4 + 1

x2
=∞,

so there are no horizontal asymptotes.

(b) For any hole in the domain x = a, what is limx→a−f (x)?
limx→a+f (x)? Are there any vertical asymptotes?

For example, lim
x→0−

x4 + 1

x2
=∞ lim

x→0+

x4 + 1

x2
=∞,

so there is a two-sided vertical asymptote.
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limx→a+f (x)? Are there any vertical asymptotes?

For example, lim
x→0−

x4 + 1

x2
=∞ lim

x→0+

x4 + 1

x2
=∞,

so there is a two-sided vertical asymptote.



Last elements of graphing
f (x) = x4+1

x2 continued. . .

Step 5: Plot salient points.

(a) Find any roots of f (x). (x-intercepts)

(b) Calculate f (x) at x = 0 (y -intercept), critical points, and
inflection points.
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(f (x) doesn’t have any roots, and doesn’t have any inflection points)
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Back to 3x4 + 4x3 − x2 − 2x

There are no vertical or horizontal asymptotes, and there are no
points missing from the domain.
Points to mark:

-1 1

-1

1
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orange = y -intercept
green = roots
purple = critical points
red = inflection points.



The second derivative test

Theorem
Let f be a function whose second derivative exists on an interval I
containing x0.

1. If f ′(x0) = 0 and f ′′(x0) > 0, then f (x0) is a local minimum.

2. If f ′(x0) = 0 and f ′′(x0) < 0, then f (x0) is a local maximum.

The Second Derivative Test for Local Extrema

Theorem 3 (p. 274) Let f be a function such that the second
derivative f 00 exists on an open interval I containing x0.

1. If f 0(x0) = 0 and f 00(x0) > 0, then f(x0) is a local minimum.

2. If f 0(x0) = 0 and f 00(x0) < 0, then f(x0) is local maximum.

3. If f 0(x0) = 0 and f 00(x0) = 0 the test fails. Use the First
Derivative Test to decide...
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Warning: If f ′(x0) = 0 and f ′′(x0) <= 0, then the test fails, use
the first derivative test to decide.



Why the 2nd derivative test fails when f ′′(x0) = 0

If f ′(x0) = 0 and f ′′(x0) = 0, anything can happen!

f (x) = x4 f (x) = −x4 f (x) = x3

f ′(x) = 4x3 f ′(x) = −4x3 f ′(x) = 3x2

f ′′(x) = 12x2 f ′′(x) = −12x2 f ′′(x) = 6x
so

f ′(0) = 0 f ′(0) = 0 f ′(0) = 0
f ′′(0) = 0 f ′′(0) = 0 f ′′(0) = 0

(The second derivative being zero just means the function is almost flat.)
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Sketch graphs of the following functions:

1. f (x) = −3x5 + 5x3.

2. f (x) =
x2 − 1

x2 + 1

Instructions:

∗ Find any places where f (x) is 0 or undefined.
∗ Calculate f ′(x) and find critical/singular points.
∗ Classify where f ′(x) is positive/negative, and therefore where
f (x) is increasing/decreasing.
∗ Calculate f ′′(x), and find where it’s 0 or undefined.
∗ Classify where f ′′(x) is positive/negative, and therefore where

f (x) is concave up/down.
∗ Calculate limx→a− f (x) and limx→a+ f (x) for anything where

f (a) is undefined.
∗ Calculate limx→∞ f (x) and limx→−∞ f (x) to see what the tails

are doing.

Hint for 2: Always simplify as a fraction of polynomials after
taking a derivative.


