Curve Sketching

Warm up

Below are pictured six functions: $f, f^{\prime}, f^{\prime \prime}, g, g^{\prime}$, and $g^{\prime \prime}$. Pick out the two functions that could be f and g, and match them to their first and second derivatives, respectively.

(e)

(b)

(f)

(c)

(g)

Warm up

Below are pictured six functions: $f, f^{\prime}, f^{\prime \prime}, g, g^{\prime}$, and $g^{\prime \prime}$. Pick out the two functions that could be f and g, and match them to their first and second derivatives, respectively.

Review: Increasing/Decreasing

Suppose that f is continuous on $[a, b]$ and differentiable on the open interval (a, b). Then

If $f^{\prime}(x)$ is $\left\{\begin{array}{c}\text { positive } \\ \text { negative } \\ \text { zero }\end{array}\right\}$ for every x in (a, b) then f is $\left\{\begin{array}{c}\text { increasing } \\ \text { decreasing } \\ \text { constant }\end{array}\right\}$ on $[a, b]$.
What it looks like:

Review: Extreme values

If f is continuous on a closed interval $[a, b]$, then there is a point in the interval where f is largest (maximized) and a point where f is smallest (minimized).

Review: Extreme values

If f is continuous on a closed interval $[a, b]$, then there is a point in the interval where f is largest (maximized) and a point where f is smallest (minimized).

The maxima or minima will happen either

1. at an endpoint, or
2. at a critical point, a point c where $f^{\prime}(c)=0$ or $f^{\prime}(c)$ is undefined.
Vocab: If $f^{\prime}(c)$ is undefined, c is also called a singular point.

Review: finding absolute min/max on closed intervals

1. Calculate $f^{\prime}(x)$.
2. Find where $f^{\prime}(x)$ is 0 or undefined on $[a, b]$ (critical/singular points).
3. Evaluate $f(x)$ at the critical and singular points, and at endpoints. The largest (reps. smallest) value among these is the maximum (reps. minimum).

Review: finding absolute min/max on closed intervals

1. Calculate $f^{\prime}(x)$.
2. Find where $f^{\prime}(x)$ is 0 or undefined on $[a, b]$ (critical/singular points).
3. Evaluate $f(x)$ at the critical and singular points, and at endpoints. The largest (reps. smallest) value among these is the maximum (reps. minimum).

Example: Let $f(x)=x^{3}-3 x$. What are the $\min / m a x$ values on the interval $[0,2]$.

Review: finding absolute min/max on closed intervals

1. Calculate $f^{\prime}(x)$.
2. Find where $f^{\prime}(x)$ is 0 or undefined on $[a, b]$ (critical/singular points).
3. Evaluate $f(x)$ at the critical and singular points, and at endpoints. The largest (reps. smallest) value among these is the maximum (reps. minimum).

Example: Let $f(x)=x^{3}-3 x$. What are the min/max values on the interval $[0,2]$.

$$
f^{\prime}(x)=3 x^{2}-3=3(x+1)(x-1)
$$

Review: finding absolute $\mathrm{min} / \mathrm{max}$ on closed intervals

1. Calculate $f^{\prime}(x)$.
2. Find where $f^{\prime}(x)$ is 0 or undefined on $[a, b]$ (critical/singular points).
3. Evaluate $f(x)$ at the critical and singular points, and at endpoints. The largest (reps. smallest) value among these is the maximum (reps. minimum).

Example: Let $f(x)=x^{3}-3 x$. What are the min/max values on the interval $[0,2]$.

$$
f^{\prime}(x)=3 x^{2}-3=3(x+1)(x-1)
$$

So $f^{\prime}(x)=0$ if $x=-1$ or 1 .

Review: finding absolute $\mathrm{min} / \mathrm{max}$ on closed intervals

1. Calculate $f^{\prime}(x)$.
2. Find where $f^{\prime}(x)$ is 0 or undefined on $[a, b]$ (critical/singular points).
3. Evaluate $f(x)$ at the critical and singular points, and at endpoints. The largest (reps. smallest) value among these is the maximum (reps. minimum).

Example: Let $f(x)=x^{3}-3 x$. What are the \min / \max values on the interval $[0,2]$.

$$
f^{\prime}(x)=3 x^{2}-3=3(x+1)(x-1)
$$

So $f^{\prime}(x)=0$ if $x=-1$ or 1 .

Review: finding absolute $\mathrm{min} / \mathrm{max}$ on closed intervals

1. Calculate $f^{\prime}(x)$.
2. Find where $f^{\prime}(x)$ is 0 or undefined on $[a, b]$ (critical/singular points).
3. Evaluate $f(x)$ at the critical and singular points, and at endpoints. The largest (reps. smallest) value among these is the maximum (reps. minimum).

Example: Let $f(x)=x^{3}-3 x$. What are the \min / \max values on the interval $[0,2]$.

$$
f^{\prime}(x)=3 x^{2}-3=3(x+1)(x-1)
$$

So $f^{\prime}(x)=0$ if $x=-1$ or 1 .

x	$f(x)$	
1	-2	critical points
0	0	end points
2	2	

Review: finding absolute $\mathrm{min} / \mathrm{max}$ on closed intervals

1. Calculate $f^{\prime}(x)$.
2. Find where $f^{\prime}(x)$ is 0 or undefined on $[a, b]$ (critical/singular points).
3. Evaluate $f(x)$ at the critical and singular points, and at endpoints. The largest (reps. smallest) value among these is the maximum (reps. minimum).

Example: Let $f(x)=x^{3}-3 x$. What are the \min / \max values on the interval $[0,2]$.

$$
f^{\prime}(x)=3 x^{2}-3=3(x+1)(x-1)
$$

So $f^{\prime}(x)=0$ if $x=-1$ or 1 .

x	$f(x)$
1	-2
0	0
2	2

critical points
end points

Finding local min/max on any intervals

Warning: Not all critical points are local minima or maxima:
Example: If $f(x)=x^{3}$, then $f^{\prime}(x)=3 x^{2}$, and so $f^{\prime}(0)=0$:

Finding local extrema: The First Derivative Test

Suppose
f is continuous on (a, b),
c is in (a, b) and is a critical point of $f(x)$, and
f is differentiable on (a, b) (except possibly at $x=c$)
Then the value $f(c)$ can be classified as follows:

1. If $f^{\prime}(x)$ changes from positive \rightarrow negative at $x=c$, then $f(c)$ is a local maximum.

2. If $f^{\prime}(x)$ changes from negative \rightarrow positive at $x=c$, then $f(c)$ is a local minimum.

3. If $f^{\prime}(x)$ doesn't change sign, then it's neither a min or a max.

Example

Find the local extrema of $f(x)=3 x^{4}+4 x^{3}-x^{2}-2 x$ over the whole real line.

Example

Find the local extrema of $f(x)=3 x^{4}+4 x^{3}-x^{2}-2 x$ over the whole real line.

Calculate $f^{\prime}(x)$:

Example

Find the local extrema of $f(x)=3 x^{4}+4 x^{3}-x^{2}-2 x$ over the whole real line.

Calculate $f^{\prime}(x)$:
$f^{\prime}(x)=12 x^{3}+12 x^{2}-2 x-2=12(x+1)(x-1 / \sqrt{6})(x+1 / \sqrt{6})$

Example

Find the local extrema of $f(x)=3 x^{4}+4 x^{3}-x^{2}-2 x$ over the whole real line.

Calculate $f^{\prime}(x)$:
$f^{\prime}(x)=12 x^{3}+12 x^{2}-2 x-2=12(x+1)(x-1 / \sqrt{6})(x+1 / \sqrt{6})$

Example

Find the local extrema of $f(x)=3 x^{4}+4 x^{3}-x^{2}-2 x$ over the whole real line.

Calculate $f^{\prime}(x)$:
$f^{\prime}(x)=12 x^{3}+12 x^{2}-2 x-2=12(x+1)(x-1 / \sqrt{6})(x+1 / \sqrt{6})$

Example

Find the local extrema of $f(x)=3 x^{4}+4 x^{3}-x^{2}-2 x$ over the whole real line.

Calculate $f^{\prime}(x)$:
$f^{\prime}(x)=12 x^{3}+12 x^{2}-2 x-2=12(x+1)(x-1 / \sqrt{6})(x+1 / \sqrt{6})$

Example

Find the local extrema of $f(x)=3 x^{4}+4 x^{3}-x^{2}-2 x$ over the whole real line.

Calculate $f^{\prime}(x)$:
$f^{\prime}(x)=12 x^{3}+12 x^{2}-2 x-2=12(x+1)(x-1 / \sqrt{6})(x+1 / \sqrt{6})$

Example

Find the local extrema of $f(x)=3 x^{4}+4 x^{3}-x^{2}-2 x$ over the whole real line.

Calculate $f^{\prime}(x)$:
$f^{\prime}(x)=12 x^{3}+12 x^{2}-2 x-2=12(x+1)(x-1 / \sqrt{6})(x+1 / \sqrt{6})$

Example

Find the local extrema of $f(x)=3 x^{4}+4 x^{3}-x^{2}-2 x$ over the whole real line.

Calculate $f^{\prime}(x)$:
$f^{\prime}(x)=12 x^{3}+12 x^{2}-2 x-2=12(x+1)(x-1 / \sqrt{6})(x+1 / \sqrt{6})$

Example

Find the local extrema of $f(x)=\frac{x^{4}+1}{x^{2}}$ over the whole real line. [Hint: Make sure to write the derivative like $f^{\prime}(x)=\frac{p(x)}{q(x)}$, where $p(x)$ and $q(x)$ are polynomials.]

Concavity

Q. How can we measure when a function is concave up or down?

Concave up
$f^{\prime}(x)$ is increasing

Concave down
$f^{\prime}(x)$ is decreasing

Concavity

Q. How can we measure when a function is concave up or down?

Concave up
$f^{\prime}(x)$ is increasing

$$
f^{\prime \prime}(x)>0
$$

Concave down
$f^{\prime}(x)$ is decreasing

$$
f^{\prime \prime}(x)<0
$$

Concavity and Inflection Points

Definition: The function f has an inflection point at the point $x=c$ if $f(c)$ exists and the concavity changes at $x=c$ from up to down or vice versa.

Back to the example $f(x)=3 x^{4}+4 x^{3}-x^{2}-2 x$
Find the inflection points of $f(x)$, and where $f(x)$ is concave up or down.

We calculated $f^{\prime}(x)=12 x^{3}+12 x^{2}-2 x-2$.

Back to the example $f(x)=3 x^{4}+4 x^{3}-x^{2}-2 x$
Find the inflection points of $f(x)$, and where $f(x)$ is concave up or down.

We calculated $f^{\prime}(x)=12 x^{3}+12 x^{2}-2 x-2$.

So

$$
f^{\prime \prime}(x)=36 x^{2}+24 x-2=(6 x-(\sqrt{6}+2))(6 x+\sqrt{6}+2)
$$

Back to the example $f(x)=3 x^{4}+4 x^{3}-x^{2}-2 x$
Find the inflection points of $f(x)$, and where $f(x)$ is concave up or down.

We calculated $f^{\prime}(x)=12 x^{3}+12 x^{2}-2 x-2$.

So

$$
f^{\prime \prime}(x)=36 x^{2}+24 x-2=(6 x-(\sqrt{6}+2))(6 x+\sqrt{6}+2)
$$

Back to the example $f(x)=3 x^{4}+4 x^{3}-x^{2}-2 x$
Find the inflection points of $f(x)$, and where $f(x)$ is concave up or down.

We calculated $f^{\prime}(x)=12 x^{3}+12 x^{2}-2 x-2$.

So

$$
f^{\prime \prime}(x)=36 x^{2}+24 x-2=(6 x-(\sqrt{6}+2))(6 x+\sqrt{6}+2)
$$

Back to the example $f(x)=3 x^{4}+4 x^{3}-x^{2}-2 x$
Find the inflection points of $f(x)$, and where $f(x)$ is concave up or down.

We calculated $f^{\prime}(x)=12 x^{3}+12 x^{2}-2 x-2$.

So

$$
f^{\prime \prime}(x)=36 x^{2}+24 x-2=(6 x-(\sqrt{6}+2))(6 x+\sqrt{6}+2)
$$

What the pieces look like

concave up
and increasing

concave down and increasing

concave up
and decreasing

concave down
and decreasing

Putting it together

$\begin{array}{lll}\text { C.C. up } & \begin{array}{l}\text { C.C. } \\ \text { down }\end{array} \quad \text { C.C. up }\end{array}$

Last elements of graphing

Back to the example where $f(x)=\frac{x^{4}+1}{x^{2}}$:

Last elements of graphing

Back to the example where $f(x)=\frac{x^{4}+1}{x^{2}}$:

Step 1: Increasing/decreasing.

We found $f^{\prime}(x)=\frac{2\left(x^{4}-1\right)}{x^{3}}=2 \frac{\left(x^{2}+1\right)(x+1)(x-1)}{x^{3}}$

Last elements of graphing

Back to the example where $f(x)=\frac{x^{4}+1}{x^{2}}$:

Step 1: Increasing/decreasing.

We found $f^{\prime}(x)=\frac{2\left(x^{4}-1\right)}{x^{3}}=2 \frac{\left(x^{2}+1\right)(x+1)(x-1)}{x^{3}}$

Step 2: Concavity.
$f^{\prime \prime}(x)=$

Last elements of graphing

Back to the example where $f(x)=\frac{x^{4}+1}{x^{2}}$:

Step 1: Increasing/decreasing.

We found $f^{\prime}(x)=\frac{2\left(x^{4}-1\right)}{x^{3}}=2 \frac{\left(x^{2}+1\right)(x+1)(x-1)}{x^{3}}$

Step 2: Concavity.
$f^{\prime \prime}(x)=$

Last elements of graphing

Back to the example where $f(x)=\frac{x^{4}+1}{x^{2}}$:

Step 1: Increasing/decreasing.
We found $f^{\prime}(x)=\frac{2\left(x^{4}-1\right)}{x^{3}}=2 \frac{\left(x^{2}+1\right)(x+1)(x-1)}{x^{3}}$

Step 2: Concavity.
$f^{\prime \prime}(x)=2 \frac{\left(4 x^{3}\right)\left(x^{3}\right)-\left(x^{4}-1\right)\left(3 x^{2}\right)}{x^{6}}$

Last elements of graphing

Back to the example where $f(x)=\frac{x^{4}+1}{x^{2}}$:

Step 1: Increasing/decreasing.
We found $f^{\prime}(x)=\frac{2\left(x^{4}-1\right)}{x^{3}}=2 \frac{\left(x^{2}+1\right)(x+1)(x-1)}{x^{3}}$

Step 2: Concavity.
$f^{\prime \prime}(x)=2 \frac{\left(4 x^{3}\right)\left(x^{3}\right)-\left(x^{4}-1\right)\left(3 x^{2}\right)}{x^{6}}=2 \frac{4 x^{6}-3 x^{6}+3 x^{2}}{x^{6}}$

Last elements of graphing

Back to the example where $f(x)=\frac{x^{4}+1}{x^{2}}$:

Step 1: Increasing/decreasing.
We found $f^{\prime}(x)=\frac{2\left(x^{4}-1\right)}{x^{3}}=2 \frac{\left(x^{2}+1\right)(x+1)(x-1)}{x^{3}}$

Step 2: Concavity.
$f^{\prime \prime}(x)=2 \frac{\left(4 x^{3}\right)\left(x^{3}\right)-\left(x^{4}-1\right)\left(3 x^{2}\right)}{x^{6}}=2 \frac{4 x^{6}-3 x^{6}+3 x^{2}}{x^{6}}=2 \frac{x^{4}+3}{x^{4}}$

Last elements of graphing

Back to the example where $f(x)=\frac{x^{4}+1}{x^{2}}$:

Step 1: Increasing/decreasing.

We found $f^{\prime}(x)=\frac{2\left(x^{4}-1\right)}{x^{3}}=2 \frac{\left(x^{2}+1\right)(x+1)(x-1)}{x^{3}}$

Step 2: Concavity.
$f^{\prime \prime}(x)=2 \frac{\left(4 x^{3}\right)\left(x^{3}\right)-\left(x^{4}-1\right)\left(3 x^{2}\right)}{x^{6}}=2 \frac{4 x^{6}-3 x^{6}+3 x^{2}}{x^{6}}=2 \frac{x^{4}+3}{x^{4}}$
Therefore $f^{\prime \prime}(x)$ is always positive, but is undef. at 0 .

Last elements of graphing

Back to the example where $f(x)=\frac{x^{4}+1}{x^{2}}$:

Step 1: Increasing/decreasing.

We found $f^{\prime}(x)=\frac{2\left(x^{4}-1\right)}{x^{3}}=2 \frac{\left(x^{2}+1\right)(x+1)(x-1)}{x^{3}}$

Step 2: Concavity.
$f^{\prime \prime}(x)=2 \frac{\left(4 x^{3}\right)\left(x^{3}\right)-\left(x^{4}-1\right)\left(3 x^{2}\right)}{x^{6}}=2 \frac{4 x^{6}-3 x^{6}+3 x^{2}}{x^{6}}=2 \frac{x^{4}+3}{x^{4}}$
Therefore $f^{\prime \prime}(x)$ is always positive, but is undef. at 0 .
So $f(x)$ is always concave up

Last elements of graphing

Back to the example where $f(x)=\frac{x^{4}+1}{x^{2}}$:
Step 0: Domain. $f(x)$ is defined everywhere except $x=0$ Step 1: Increasing/decreasing.

We found $f^{\prime}(x)=\frac{2\left(x^{4}-1\right)}{x^{3}}=2 \frac{\left(x^{2}+1\right)(x+1)(x-1)}{x^{3}}$

Step 2: Concavity.
$f^{\prime \prime}(x)=2 \frac{\left(4 x^{3}\right)\left(x^{3}\right)-\left(x^{4}-1\right)\left(3 x^{2}\right)}{x^{6}}=2 \frac{4 x^{6}-3 x^{6}+3 x^{2}}{x^{6}}=2 \frac{x^{4}+3}{x^{4}}$
Therefore $f^{\prime \prime}(x)$ is always positive, but is undef. at 0 .
So $f(x)$ is always concave up

Last elements of graphing

 $f(x)=\frac{x^{4}+1}{x^{2}}$ continued...Step 4: Extreme behavior.
(a) What is $\lim _{x \rightarrow-\infty} f(x)$? What is $\lim _{x \rightarrow \infty} f(x)$?

Are there any horizontal asymptotes?
(b) For any hole in the domain $x=a$, what is $\lim _{x \rightarrow a^{-}} f(x)$? $\lim _{x \rightarrow a^{+}} f(x)$? Are there any vertical asymptotes?

Last elements of graphing

 $f(x)=\frac{x^{4}+1}{x^{2}}$ continued. .
Step 4: Extreme behavior.

(a) What is $\lim _{x \rightarrow-\infty} f(x)$? What is $\lim _{x \rightarrow \infty} f(x)$?

Are there any horizontal asymptotes?
For example, $\quad \lim _{x \rightarrow-\infty} \frac{x^{4}+1}{x^{2}}=\infty \quad \lim _{x \rightarrow \infty} \frac{x^{4}+1}{x^{2}}=\infty$,
so there are no horizontal asymptotes.
(b) For any hole in the domain $x=a$, what is $\lim _{x \rightarrow a^{-}} f(x)$? $\lim _{x \rightarrow a^{+}} f(x)$? Are there any vertical asymptotes?

Last elements of graphing

 $f(x)=\frac{x^{4}+1}{x^{2}}$ continued. . .
Step 4: Extreme behavior.

(a) What is $\lim _{x \rightarrow-\infty} f(x)$? What is $\lim _{x \rightarrow \infty} f(x)$?

Are there any horizontal asymptotes?
For example, $\quad \lim _{x \rightarrow-\infty} \frac{x^{4}+1}{x^{2}}=\infty \quad \lim _{x \rightarrow \infty} \frac{x^{4}+1}{x^{2}}=\infty$,
so there are no horizontal asymptotes.
(b) For any hole in the domain $x=a$, what is $\lim _{x \rightarrow a^{-}} f(x)$? $\lim _{x \rightarrow a^{+}} f(x)$? Are there any vertical asymptotes?

For example, $\quad \lim _{x \rightarrow 0^{-}} \frac{x^{4}+1}{x^{2}}=\infty \quad \lim _{x \rightarrow 0^{+}} \frac{x^{4}+1}{x^{2}}=\infty$,
so there is a two-sided vertical asymptote.

Last elements of graphing

 $f(x)=\frac{x^{4}+1}{x^{2}}$ continued...Step 5: Plot salient points.
(a) Find any roots of $f(x)$. (x-intercepts)
(b) Calculate $f(x)$ at $x=0$ (y-intercept), critical points, and inflection points.

Last elements of graphing

 $f(x)=\frac{x^{4}+1}{x^{2}}$ continued...
Step 5: Plot salient points.

(a) Find any roots of $f(x)$. (x-intercepts)
(b) Calculate $f(x)$ at $x=0$ (y-intercept), critical points, and inflection points.

($f(x)$ doesn't have any roots, and doesn't have any inflection points)

Back to $3 x^{4}+4 x^{3}-x^{2}-2 x$

There are no vertical or horizontal asymptotes, and there are no points missing from the domain.
Points to mark:

orange $=y$-intercept green $=$ roots
purple $=$ critical points red $=$ inflection points.

The second derivative test

Theorem

Let f be a function whose second derivative exists on an interval I containing x_{0}.

1. If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)>0$, then $f\left(x_{0}\right)$ is a local minimum.
2. If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)<0$, then $f\left(x_{0}\right)$ is a local maximum.

Concave
Down

Concave

Up

$f^{\prime}\left(x_{0}\right)=0$

Warning: If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)<=0$, then the test fails, use the first derivative test to decide.

Why the $2^{\text {nd }}$ derivative test fails when $f^{\prime \prime}\left(x_{0}\right)=0$

$$
\text { If } f^{\prime}\left(x_{0}\right)=0 \text { and } f^{\prime \prime}\left(x_{0}\right)=0 \text {, anything can happen! }
$$

Why the $2^{\text {nd }}$ derivative test fails when $f^{\prime \prime}\left(x_{0}\right)=0$

$$
\text { If } f^{\prime}\left(x_{0}\right)=0 \text { and } f^{\prime \prime}\left(x_{0}\right)=0 \text {, anything can happen! }
$$

$$
\begin{gathered}
f^{\prime}(x)=4 x^{3} \\
f^{\prime \prime}(x)=12 x^{2}
\end{gathered}
$$

$f(x)=-x^{4}$

$$
\begin{aligned}
f^{\prime}(x) & =-4 x^{3} \\
f^{\prime \prime}(x) & =-12 x^{2}
\end{aligned}
$$

$f^{\prime}(x)=3 x^{2}$
$f^{\prime \prime}(x)=6 x$

Why the $2^{\text {nd }}$ derivative test fails when $f^{\prime \prime}\left(x_{0}\right)=0$

$$
\text { If } f^{\prime}\left(x_{0}\right)=0 \text { and } f^{\prime \prime}\left(x_{0}\right)=0 \text {, anything can happen! }
$$

$$
\begin{gathered}
f^{\prime}(x)=4 x^{3} \\
f^{\prime \prime}(x)=12 x^{2}
\end{gathered}
$$

$$
f^{\prime}(0)=0
$$

$$
f^{\prime \prime}(0)=0
$$

$f(x)=-x^{4}$

$$
\begin{array}{cc}
f^{\prime}(x)=-4 x^{3} & f^{\prime}(x)=3 x^{2} \\
f^{\prime \prime}(x)=-12 x^{2} & f^{\prime \prime}(x)=6 x \\
\text { so } & \\
f^{\prime}(0)=0 & f^{\prime}(0)=0 \\
f^{\prime \prime}(0)=0 & f^{\prime \prime}(0)=0
\end{array}
$$

Why the $2^{\text {nd }}$ derivative test fails when $f^{\prime \prime}\left(x_{0}\right)=0$

$$
\text { If } f^{\prime}\left(x_{0}\right)=0 \text { and } f^{\prime \prime}\left(x_{0}\right)=0 \text {, anything can happen! }
$$

$$
\begin{gathered}
f^{\prime}(x)=4 x^{3} \\
f^{\prime \prime}(x)=12 x^{2}
\end{gathered}
$$

$$
f^{\prime}(x)=-4 x^{3}
$$

$$
f^{\prime}(x)=3 x^{2}
$$

$$
f^{\prime \prime}(x)=-12 x^{2}
$$

$$
f^{\prime \prime}(x)=6 x
$$

so

$$
\begin{aligned}
f^{\prime}(0) & =0 \\
f^{\prime \prime}(0) & =0
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(0) & =0 \\
f^{\prime \prime}(0) & =0
\end{aligned}
$$

$$
f^{\prime}(0)=0
$$

$$
f^{\prime \prime}(0)=0
$$

(The second derivative being zero just means the function is almost flat.)

Sketch graphs of the following functions:

1. $f(x)=-3 x^{5}+5 x^{3}$.
2. $f(x)=\frac{x^{2}-1}{x^{2}+1}$

Instructions:

* Find any places where $f(x)$ is 0 or undefined.
* Calculate $f^{\prime}(x)$ and find critical/singular points.
* Classify where $f^{\prime}(x)$ is positive/negative, and therefore where $f(x)$ is increasing/decreasing.
* Calculate $f^{\prime \prime}(x)$, and find where it's 0 or undefined.
* Classify where $f^{\prime \prime}(x)$ is positive/negative, and therefore where $f(x)$ is concave up/down.
* Calculate $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ for anything where $f(a)$ is undefined.
* Calculate $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$ to see what the tails are doing.

Hint for 2: Always simplify as a fraction of polynomials after taking a derivative.

