## Curve Sketching

## Warm up

Below are pictured six functions: $f, f^{\prime}, f^{\prime \prime}, g, g^{\prime}$, and $g^{\prime \prime}$. Pick out the two functions that could be $f$ and $g$, and match them to their first and second derivatives, respectively.

(e)


(f)

(c)

(g)


## Review: Increasing/Decreasing

Suppose that $f$ is continuous on $[a, b]$ and differentiable on the open interval $(a, b)$. Then

If $f^{\prime}(x)$ is $\left\{\begin{array}{c}\text { positive } \\ \text { negative } \\ \text { zero }\end{array}\right\}$ for every $x$ in $(a, b)$ then $f$ is $\left\{\begin{array}{c}\text { increasing } \\ \text { decreasing } \\ \text { constant }\end{array}\right\}$ on $[a, b]$.
What it looks like:


## Review: Extreme values

If $f$ is continuous on a closed interval $[a, b]$, then there is a point in the interval where $f$ is largest (maximized) and a point where $f$ is smallest (minimized).

The maxima or minima will happen either

1. at an endpoint, or
2. at a critical point, a point $c$ where $f^{\prime}(c)=0$ or $f^{\prime}(c)$ is undefined.
Vocab: If $f^{\prime}(c)$ is undefined, $c$ is also called a singular point.


## Review: finding absolute min/max on closed intervals

1. Calculate $f^{\prime}(x)$.
2. Find where $f^{\prime}(x)$ is 0 or undefined on $[a, b]$ (critical/singular points).
3. Evaluate $f(x)$ at the critical and singular points, and at endpoints. The largest (reps. smallest) value among these is the maximum (reps. minimum).

Example: Let $f(x)=x^{3}-3 x$. What are the $\min / m a x$ values on the interval $[0,2]$.

$$
f^{\prime}(x)=3 x^{2}-3=3(x+1)(x-1)
$$

So $f^{\prime}(x)=0$ if $x=-1$ or 1 .

| $x$ | $f(x)$ |  |
| :---: | :---: | :---: |
| 1 | -2 | critical points |
| 0 | 0 | end points |
| 2 | 2 |  |



## Finding local min/max on any intervals

Warning: Not all critical points are local minima or maxima:
Example: If $f(x)=x^{3}$, then $f^{\prime}(x)=3 x^{2}$, and so $f^{\prime}(0)=0$ :


Finding local extrema: The First Derivative Test
Suppose
$f$ is continuous on $(a, b)$,
$c$ is in $(a, b)$ and is a critical point of $f(x)$, and
$f$ is differentiable on $(a, b)$ (except possibly at $x=c$ )
Then the value $f(c)$ can be classified as follows:

1. If $f^{\prime}(x)$ changes from positive $\rightarrow$ negative at $x=c$, then $f(c)$ is a local maximum.

2. If $f^{\prime}(x)$ changes from negative $\rightarrow$ positive at $x=c$, then $f(c)$ is a local minimum.

3. If $f^{\prime}(x)$ doesn't change sign, then it's neither a min or a max.

## Example

Find the local extrema of $f(x)=3 x^{4}+4 x^{3}-x^{2}-2 x$ over the whole real line.

Calculate $f^{\prime}(x)$ :

$$
f^{\prime}(x)=12 x^{3}+12 x^{2}-2 x-2=12(x+1)(x-1 / \sqrt{6})(x+1 / \sqrt{6})
$$




## Example

Find the local extrema of $f(x)=\frac{x^{4}+1}{x^{2}}$ over the whole real line. [Hint: Make sure to write the derivative like $f^{\prime}(x)=\frac{p(x)}{q(x)}$, where $p(x)$ and $q(x)$ are polynomials.]

$$
\begin{aligned}
f & =x^{2}+\frac{1}{x^{2}} \\
f^{\prime} & =2 x-2 x^{-3} \Rightarrow \frac{2}{x^{3}} \\
& =\frac{2 x^{4}-2}{x^{3}}=2 \frac{x^{4}-1}{x^{3}}
\end{aligned}
$$

undefined @ $x=0$
$f^{\prime}(x)=0$ when $x^{4}-1=0$

$$
\left(x^{2}+1\right)(x+1)(x-1)=
$$

So critical points: $x=0,1,-1$
plug in... -2


## Concavity

Q. How can we measure when a function is concave up or down?


Concave up
$f^{\prime}(x)$ is increasing

$$
f^{\prime \prime}(x)>0
$$



Concave down
$f^{\prime}(x)$ is decreasing

$$
f^{\prime \prime}(x)<0
$$

## Concavity and Inflection Points

Definition: The function $f$ has an inflection point at the point $x=c$ if $f(c)$ exists and the concavity changes at $x=c$ from up to down or vice versa.




Back to the example $f(x)=3 x^{4}+4 x^{3}-x^{2}-2 x$
Find the inflection points of $f(x)$, and where $f(x)$ is concave up or down.

We calculated $f^{\prime}(x)=12 x^{3}+12 x^{2}-2 x-2$.


So

$$
f^{\prime \prime}(x)=36 x^{2}+24 x-2=(6 x-(\sqrt{6}+2))(6 x+\sqrt{6}+2)
$$

Putting it together

C.C. up
C.C. down
C.C. up


What the pieces look like
concave up and increasing

concave down and increasing

concave up and decreasing

concave down and decreasing


## Last elements of graphing

Back to the example where $f(x)=\frac{x^{4}+1}{x^{2}}$ :
Step 0: Domain. $f(x)$ is defined everywhere except $x=0$
Step 1: Increasing/decreasing.
We found $f^{\prime}(x)=\frac{2\left(x^{4}-1\right)}{x^{3}}=2 \frac{\left(x^{2}+1\right)(x+1)(x-1)}{x^{3}}$


## Step 2: Concavity.

$f^{\prime \prime}(x)=2 \frac{\left(4 x^{3}\right)\left(x^{3}\right)-\left(x^{4}-1\right)\left(3 x^{2}\right)}{x^{6}}=2 \frac{4 x^{6}-3 x^{6}+3 x^{2}}{x^{6}}=2 \frac{x^{4}+3}{x^{4}}$
Therefore $f^{\prime \prime}(x)$ is always positive, but is undef. at 0 .
So $f(x)$ is always concave up

Last elements of graphing $f(x)=\frac{x^{4}+1}{x^{2}}$ continued. .

## Step 4: Extreme behavior.

(a) What is $\lim _{x \rightarrow-\infty} f(x)$ ? What is $\lim _{x \rightarrow \infty} f(x)$ ? Are there any horizontal asymptotes?

For example, $\quad \lim _{x \rightarrow-\infty} \frac{x^{4}+1}{x^{2}}=\infty \quad \lim _{x \rightarrow \infty} \frac{x^{4}+1}{x^{2}}=\infty$,
so there are no horizontal asymptotes.
(b) For any hole in the domain $x=a$, what is $\lim _{x \rightarrow a^{-}} f(x)$ ? $\lim _{x \rightarrow a^{+}} f(x)$ ? Are there any vertical asymptotes?

For example, $\quad \lim _{x \rightarrow 0^{-}} \frac{x^{4}+1}{x^{2}}=\infty \quad \lim _{x \rightarrow 0^{+}} \frac{x^{4}+1}{x^{2}}=\infty$,
so there is a two-sided vertical asymptote.

Last elements of graphing
$f(x)=\frac{x^{4}+1}{x^{2}}$ continued..

## Step 5: Plot salient points.

(a) Find any roots of $f(x)$. ( $x$-intercepts)
(b) Calculate $f(x)$ at $x=0$ ( $y$-intercept), critical points, and inflection points.

## The second derivative test

## Theorem

Let $f$ be a function whose second derivative exists on an interval I containing $x_{0}$.

1. If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)>0$, then $f\left(x_{0}\right)$ is a local minimum.
2. If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)<0$, then $f\left(x_{0}\right)$ is a local maximum.


Concave
Down

Concave
Up

$f^{\prime}\left(x_{0}\right)=0$

Warning: If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)<=0$, then the test fails, use the first derivative test to decide.

Why the $2^{\text {nd }}$ derivative test fails when $f^{\prime \prime}\left(x_{0}\right)=0$ If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)=0$, anything can happen!




$$
f^{\prime}(x)=4 x^{3}
$$

$$
f^{\prime}(x)=-4 x^{3}
$$

$$
f^{\prime}(x)=3 x^{2}
$$

$$
f^{\prime \prime}(x)=12 x^{2}
$$

$$
f^{\prime \prime}(x)=-12 x^{2}
$$

$$
f^{\prime \prime}(x)=6 x
$$

so
$f^{\prime}(0)=0$

$$
f^{\prime}(0)=0
$$

$$
f^{\prime}(0)=0
$$

$$
f^{\prime \prime}(0)=0
$$

$$
f^{\prime \prime}(0)=0
$$

$$
f^{\prime \prime}(0)=0
$$

(The second derivative being zero just means the function is almost flat.)

Sketch graphs of the following functions:

1. $f(x)=-3 x^{5}+5 x^{3}$.
2. $f(x)=\frac{x^{2}-1}{x^{2}+1}$

## Instructions:

* Find any places where $f(x)$ is 0 or undefined.
* Calculate $f^{\prime}(x)$ and find critical/singular points.
* Classify where $f^{\prime}(x)$ is positive/negative, and therefore where $f(x)$ is increasing/decreasing.
* Calculate $f^{\prime \prime}(x)$, and find where it's 0 or undefined.
* Classify where $f^{\prime \prime}(x)$ is positive/negative, and therefore where $f(x)$ is concave up/down.
* Calculate $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ for anything where $f(a)$ is undefined.
* Calculate $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$ to see what the tails are doing.

Hint for 2: Always simplify as a fraction of polynomials after taking a derivative.

## Extra practice: Graphing functions

For each of the following graphing problems also determine (a) where $f(x)$ is defined, (b) where $f(x)$ is continuous, (c) where $f(x)$ is differentiable, (d) where $f(x)$ has vertical asymptotes, (e) if $f(x)$ has horizontal asymptotes, ( f ) where $f(x)$ is increasing and where it is decreasing, ( g ) where $f(x)$ is concave up and where it is concave down, (h) what the critical points of $f(x)$ are, and (i) where the points of inflection are. Then sketch a graph.

1. Graph $f(x)=a$, where $a$ is a constant.
2. Graph $f(x)=a x+b$, where $a$ and $b$ are constants.
3. Graph $f(x)=a(x-c)+b$, where $a, b$ and $c$ are constants.
4. Graph $f(x)= \begin{cases}2-x, & \text { if } x \geq 1, \\ x, & \text { if } 0 \leq x \leq 1 .\end{cases}$
5. Graph $f(x)= \begin{cases}2+x, & \text { if } x \geq 0, \\ 2-x, & \text { if } x<0 .\end{cases}$
6. Graph $f(x)= \begin{cases}1-x, & \text { if } x<1, \\ x^{2}-1, & \text { if } x \geq 1 .\end{cases}$
7. Graph $f(x)=2 x-x^{2}$.
8. Graph $f(x)=x-x^{2}-27$.
9. Graph $f(x)=3 x^{2}-2 x-1$.
10. Graph $f(x)=x^{3}-x+1$.
11. Graph $f(x)=x^{3}-x-1$.
12. Graph $f(x)=(x-2)^{2}(x-1)$.
13. Graph $f(x)=2 x^{3}-21 x^{2}+36 x-20$.
14. Graph $f(x)=2 x^{3}+x^{2}-20 x$.
15. Graph $f(x)=1-x^{4}$.
16. Graph $f(x)=x^{4}-3 x^{2}+x$.
17. Graph $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$.
18. Graph $f(x)=3 x^{4}-16 x^{3}+18 x^{2}$.
19. Graph $f(x)=3 x^{5}-25 x^{3}+60 x$.
20. Graph $f(x)=x^{5}-4 x^{4}+4 x^{3}$.
21. Graph $f(x)=x^{3}(x-2)^{2}$.
22. Graph $f(x)=(x-2)^{4}(x+1)^{3}(x-1)$.
23. Graph $f(x)=(x-3)^{5}(x+1)^{4}$.
24. Graph the function $f(x)$ such that $\frac{d f}{d x}=1 / x$ and $f(-1)=2$ and $f(1)=1$.
25. Graph $f(x)=x+1 / x$.
26. Graph $f(x)=\frac{x^{2}+2 x-20}{x-4}$.
27. Graph $f(x)=\frac{1}{x^{2}+1}$.
28. Graph $f(x)=\frac{x^{3}}{x^{2}+1}$.
29. Graph $f(x)=\frac{x^{2}-1}{x^{2}+1}$.
30. Graph $f(x)=\frac{2 x^{2}}{x^{2}-1}$.
31. Graph $f(x)=\frac{x^{2}+7 x+3}{x^{2}}$.
32. Graph $f(x)=\frac{x^{2}(x+1)^{3}}{(x-2)^{2}(x-4)^{4}}$.
33. Graph $f(x)=\frac{x^{2}-1}{x^{3}-4 x}$.
(1)

$$
\begin{aligned}
& f(x)=-3 x^{5}+5 x^{3}=x^{3}\left(-3 x^{2}+5\right)=-3\left(x^{3}\right)\left(x^{2}-\frac{5}{3}\right) \\
& f^{\prime}(x)=-15 x^{4}+15 x^{2}=-15\left(x^{4}-x^{2}\right) \quad f=0 \text { e } x=0, \\
&=-15 x^{2}(x+1)(x-1) \\
& f^{\prime}=0 \text { e } x=0, \pm 1 \\
& f^{\prime \prime}(x)=-60 x^{3}+30 x=-60(x)\left(x^{2}-\frac{1}{2}\right) \\
& f^{\prime \prime}=0 @ x=0, x= \pm \sqrt{1 / 2}
\end{aligned}
$$



$$
\lim _{x \rightarrow-\infty} f(x)=\infty
$$



$$
\lim _{x \rightarrow \infty} f(x)=-\infty
$$

(2) $f(x)=\frac{x^{2}-1}{x^{2}+1}=\frac{(x+1)(x-1)}{x^{2}+1}$
so $f(x)=0$ when $x= \pm 1$
(and is defined everywhere
since $x^{2}+1>0$ )

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\left(x^{2}+1\right)(2 x)-\left(x^{2}-1\right)(2 x)}{\left(x^{2}+1\right)^{2}} \\
&=\frac{4 x}{\left(x^{2}+1\right)^{2}} \quad f^{\prime}(x)=0 \quad \text { when } x=0 \\
& f^{\prime \prime}(x)=\frac{4\left(x^{2}+1\right)^{2}-4 x \cdot 2\left(x^{2}+1\right) \cdot 2 x}{\left(x^{2}+1\right)^{4}} \\
&=\frac{\left(x^{2}+1\right)(4)\left(x^{2}+1-4 x^{2}\right)}{\left(x^{2}+1\right)^{4}} \\
&=\frac{-4 \cdot 3\left(x^{2}-1 / 3\right)}{\left(x^{2}+1\right)^{4}}=-12(x+1 / \sqrt{3})(x-1 / \sqrt{3}) \\
&\left(x^{2}+1\right)^{4}
\end{aligned}
$$

so $f^{\prime \prime}(x)=0$ when $x= \pm 1 / \sqrt{3}$

$$
\lim _{x \rightarrow \infty} \frac{x^{2}-1}{x^{2}+1}=1 \quad \lim _{x \rightarrow-\infty} \frac{x^{2}-1}{x^{2}+1}=1
$$




