Going between graphs of
functions and their derivatives:

Mean value theorem, Rolle's theorem, and

intervals of increase and decrease



The Mean Value Theorem

Theorem

Suppose that f is defined and continuous on a closed interval

[a, b], and suppose that f’ exists on the open interval (a, b). Then
there exists a point c in (a, b) such that

f(b)—f(a) _
ﬁ_f(c).
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Bad examples

a b a b a b

Discontinuity Discontinuity No derivative
at an endpoint at an interior point at an interior point



Examples

Does the mean value theorem apply to f(x) = |x| on [-1,1]?
(No! Because f(x) is not differentiable at x = 0.)
How about to f(x) = |x| on [1,5]?

(Yes! Because f(x) = x on this domain, which is differentiable.)



Example

Under what circumstances does the Mean Value Theorem apply to
the function f(x) =1/x?

ANY closed interval on the domain!



Example

Verify the conclusion of the Mean Value Theorem for the function
f(x) = (x + 1)3 — 1 on the interval [-3,1].

Step 1:
Step 2:

Step 3:

Check that the conditions of the MVT are met.

Calculate the slope m of the line joining the two
endpoints.

Solve the equation f'(x) = m.



Intervals on increase/decrease

Formally,

f is increasing if
f(x1) < f(x2) whenever x; < xo.

f is nondecreasing if
f(x1) < f(x2) whenever x; < xo.

f is decreasing if
f(x1) > f(x2) whenever x; < xa.

f is nonincreasing if
f(x1) > f(x2) whenever x1 < x2.
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Sign of the derivative
If f(x) is increasing, what is the sign of the derivative?
Look at the difference quotient:

f(x+ h)—f(x)
h
The derivative is a two-sided limit, so we have two cases:

Case 1: h is positive.
So x + h > x, which implies f(x 4+ h) — f(x) > 0.
So

f(x+h)—f(x) 0.

Case 2: h is negative.
So x + h < x, which implies f(x + h) — f(x) < 0.

So
f(x+ h) — f(x) >0,

So the difference quotient is positive!



Intervals on increase/decrease

Formally,

f(x+h)—f(x)
h

f(x1) > f(x2) whenever x1 < x2.

limp_o ~

f is increasing if os pos. or 0
f(x1) < f(x2) whenever x; < x. pOS. (non-neg)
f is nondecreasing if non-n non-n
f(x1) < f(x2) whenever x; < x,. on-neg. on-neg.
f is decreasing if ne NON-DOS
f(x1) > f(x2) whenever x; < x,. & pos.
f is nonincreasing if

N— non-pos. non-pos.

So we can calculate some of the “shape” of f(x) by knowing when its

derivative is positive, negative, and 0!



Example
On what interval(s) is the function f(x) = x> + x + 1 increasing or
decreasing?

Step 1: Calculate the derivative.
f'(x) =3x2+1
Step 2: Decide when the derivative is positive, negative, or zero.
f'(x) is always positive!
Step 3: Bring that information back to f(x).
f(x) is always increasing!
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Example

Find the intervals on which the function
f(x) = 2x3 — 6x? — 18x + 1 is increasing and those on which it is
decreasing.

Step 1: Calculate the derivative.
f'(x) = 6x2 — 12x — 18 = 6(x — 3)(x + 1)
Step 2: Decide when the derivative is positive, negative, or zero.

+4+ b+ 0 ----------0+++
-3 2 - 0 1 2 3

Step 3: Bring that information back to f(x).
f(x) is increasing, then decreasing, then increasing.
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If f is continuous on a closed interval [a, b], then there is a point in
the interval where f is largest (maximized) and a point where f is
smallest (minimized).

The maxima or minima will happen either
1. at an endpoint, or

2. at a critical point, a point ¢ where f'(c) =0

what's going on right before ¢?
what's going on right after ¢?

f'(x) is f'(x) is
positive positive

f'(x)is
negative

f'(x)is
negative



Example

For the function f(x) = 2x3 — 6x? — 18x + 1, let us find the points
in the interval [—4, 4] where the function assumes its maximum
and minimum values.

f/(x) = 6x> — 12x — 18 = 6(x — 3)(x + 1)

flx)

-1 11
3 53
—4 | —151
4 | -39
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Rolle's Theorem

Theorem
Suppose that the function f is

continuous on the closed interval |[a, b],
differentiable on the open interval (a, b), and
a and b are both roots of f.

Then there is at least one point ¢ in (a, b) where f'(c) = 0.

A

(In other words, if g didn't jump, then it had to turn around)



Back to Newton's method

Remember: Newton's method helped us fine roots of functions.

Pick an xg to start. To get xj;1, follow the tangent line to f(x) at x;
down to it's x-intercept. The x;'s get closer and closer to a root of f.

But how do we know when we've found all of them?
For example: Find the roots of f(x) = x> — 3x + 1.

If xp is. .. -2 -1 0 1 2
then the x;’s get closer to. ..
-1.3888 -1.3888 0.3347 1.2146 1.2146

X = -9 -.8 -7 -.6 5 .6 g
x;— -13... 12... 12... 03... 03... 03... 03...
xp = ~-10 -20 -50 -100 -1000  -10000

xp— -13... -13... -13... -13... -13... -13...

xo = 10 20 50 100 1000 10000 100000

x— l12... 12.. 12... 12.. 12.. 12... 12 ..

After plugging in lots of xg's, we've only found three roots. But there
could be up to 5! How do we know we're not just very unlucky?



Use Rolle’s Theorem to show that f(x) = x®> — 3x + 1 has exactly
three real roots!

Step 1: Show that there are at most three roots.

Step 2: Show that there are at least three roots.
Two methods:
(1) Use Newton's method to root out three roots, or

(2) find four points f(x) which alternate signs, and use the

intermediate value theorem.
(IVT: If f(x) is cont. and f(a) < C < f(b), then there's a ¢ btwn. a and b where f(c) = C)

On your own:

1. Do an analysis of increasing/decreasing on f(x).
How many times does f(x) turn around?
Conclude: what is an upper bound on the number of roots?

2. Find the heights of the critical points.
Using the intermediate value theorem, what is a lower bound on the
number of roots? Can you do better if you also find the height of
the function at a big positive number and a big negative number?

3. Conclude: How many real roots does f(x) have?

4. Bonus:
Using the approximations from before, sketch a graph.



