The Mean Value Theorem

Theorem

Suppose that f is defined and continuous on a closed interval $[a, b]$, and suppose that f^{\prime} exists on the open interval (a, b). Then there exists a point c in (a, b) such that

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c) .
$$

Bad examples

Discontinuity
at an endpoint

Discontinuity
at an interior point

No derivative at an interior point

Examples

Does the mean value theorem apply to $f(x)=|x|$ on $[-1,1]$?

How about to $f(x)=|x|$ on $[1,5]$?

Example

Under what circumstances does the Mean Value Theorem apply to the function $f(x)=1 / x$?

Example

Verify the conclusion of the Mean Value Theorem for the function $f(x)=(x+1)^{3}-1$ on the interval $[-3,1]$.

Step 1: Check that the conditions of the MVT are met.
Step 2: Calculate the slope m of the line joining the two endpoints.
Step 3: Solve the equation $f^{\prime}(x)=m$.

Formally,	$\frac{f(x+h)-f(x)}{h}$	$\lim _{h \rightarrow 0} \sim$
f is increasing if $f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.	pos.	$\begin{aligned} & \text { pos. or } 0 \\ & \text { (non-neg) } \end{aligned}$
f is nondecreasing if $f\left(x_{1}\right) \leq f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.	non-neg.	non-neg.
f is decreasing if $f\left(x_{1}\right)>f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.	neg.	non-pos.
f is nonincreasing if $f\left(x_{1}\right) \geq f\left(x_{2}\right)$ whenever $x 1<x 2$.	non-pos.	non-pos.

So we can calculate some of the "shape" of $f(x)$ by knowing when its derivative is positive, negative, and 0 !

Sign of the derivative

If $f(x)$ is increasing, what is the sign of the derivative?
Look at the difference quotient:

$$
\frac{f(x+h)-f(x)}{h}
$$

The derivative is a two-sided limit, so we have two cases:
Case 1: h is positive.
So $x+h>x$, which implies $f(x+h)-f(x)>0$.
So

$$
\frac{f(x+h)-f(x)}{h}>0 .
$$

Case 2: h is negative.
So $x+h<x$, which implies $f(x+h)-f(x)<0$.
So

$$
\frac{f(x+h)-f(x)}{h}>0 .
$$

So the difference quotient is positive!

Example

On what interval(s) is the function $f(x)=x^{3}+x+1$ increasing or decreasing?

Step 1: Calculate the derivative.

Step 2: Decide when the derivative is positive, negative, or zero.

Step 3: Bring that information back to $f(x)$.

Example

Find the intervals on which the function
$f(x)=2 x^{3}-6 x^{2}-18 x+1$ is increasing and those on which it is decreasing.
Step 1: Calculate the derivative.

Step 2: Decide when the derivative is positive, negative, or zero.

Step 3: Bring that information back to $f(x)$.

If f is continuous on a closed interval $[a, b]$, then there is a point in the interval where f is largest (maximized) and a point where f is smallest (minimized).

The maxima or minima will happen either

1. at an endpoint, or
2. at a critical point, a point c where $f^{\prime}(c)=0$

Example

For the function $f(x)=2 x^{3}-6 x^{2}-18 x+1$, let us find the points in the interval $[-4,4]$ where the function assumes its maximum and minimum values.

$$
f^{\prime}(x)=6 x^{2}-12 x-18=6(x-3)(x+1)
$$

x	$f(x)$
-1	11
3	53
-4	-151
4	-39

Rolle's Theorem

Theorem

Suppose that the function f is
continuous on the closed interval $[a, b]$,
differentiable on the open interval (a, b), and
a and b are both roots of f.
Then there is at least one point c in (a, b) where $f^{\prime}(c)=0$.

(In other words, if g didn't jump, then it had to turn around)

Back to Newton's method

Remember: Newton's method helped us fine roots of functions.
Pick an x_{0} to start. To get x_{i+1}, follow the tangent line to $f(x)$ at x_{i} down to it's x-intercept. The x_{i} 's get closer and closer to a root of f.

But how do we know when we've found all of them?
For example: Find the roots of $f(x)=x^{5}-3 x+1$.

If x_{0} is. .		-2 -1		0	1	2	
then the x_{i} 's get closer to...							
		-1.3888	-1.3888	0.3347	1.2146	1.2146	
$x_{0}=$	-. 9	-. 8	-. 7	-. 6	. 5	6	. 7
$x_{i} \rightarrow$	-1.3.	1.2	1.2.	0.3.	0.3.	0.3 .	0.3 .
$x_{0}=$	-10	-20	-50	-100	-1000	-1000	
$x_{i} \rightarrow$	-1.3...	-1.3...	-1.3.	-1.3.	-1.3.	-1.3	
$x_{0}=$	10	20	50	100	1000	10000	100000
$x_{i} \rightarrow$	1.2...	1.2...	1.2...	1.2..	1.2...	1.2...	1.2...

After plugging in lots of x_{0} 's, we've only found three roots. But there could be up to 5! How do we know we're not just very unlucky?

Use Rolle's Theorem to show that $f(x)=x^{5}-3 x+1$ has exactly three real roots!
Step 1: Show that there are at most three roots.
Step 2: Show that there are at least three roots.
Two methods:
(1) Use Newton's method to root out three roots, or
(2) find four points $f(x)$ which alternate signs, and use the intermediate value theorem.
(IVT: If $f(x)$ is cont. and $f(a)<C<f(b)$, then there's a c btwn. a and b where $f(c)=C$)
On your own:

1. Do an analysis of increasing/decreasing on $f(x)$.

How many times does $f(x)$ turn around?
Conclude: what is an upper bound on the number of roots?
2. Find the heights of the critical points.

Using the intermediate value theorem, what is a lower bound on the number of roots? Can you do better if you also find the height of the function at a big positive number and a big negative number?
3. Conclude: How many real roots does $f(x)$ have?
4. Bonus:

Using the approximations from before, sketch a graph.

