Going between graphs of functions and their derivatives:

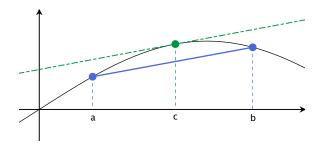
Mean value theorem, Rolle's theorem, and intervals of increase and decrease

The Mean Value Theorem

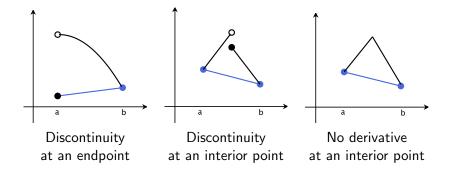
Theorem

Suppose that f is defined and continuous on a closed interval [a, b], and suppose that f' exists on the open interval (a, b). Then there exists a point c in (a, b) such that

$$\frac{f(b)-f(a)}{b-a}=f'(c).$$



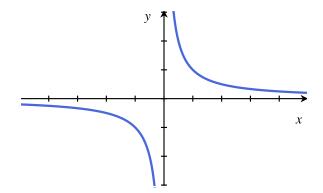
Bad examples



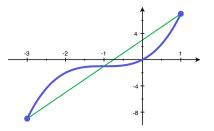
Does the mean value theorem apply to f(x) = |x| on [-1, 1]?

How about to f(x) = |x| on [1, 5]?

Under what circumstances does the Mean Value Theorem apply to the function f(x) = 1/x?



Verify the conclusion of the Mean Value Theorem for the function $f(x) = (x + 1)^3 - 1$ on the interval [-3, 1].



- Step 1: Check that the conditions of the MVT are met.
- **Step 2:** Calculate the slope *m* of the line joining the two endpoints.
- **Step 3:** Solve the equation f'(x) = m.

Formally,

f is *increasing* if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$.

f is nondecreasing if $f(x_1) \leq f(x_2)$ whenever $x_1 < x_2$.

f is *decreasing* if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$.

f is nonincreasing if $f(x_1) \ge f(x_2)$ whenever x1 < x2.

If f(x) is **increasing**, what is the sign of the derivative? Look at the difference quotient:

$$\frac{f(x+h)-f(x)}{h}$$

The derivative is a two-sided limit, so we have two cases:

If f(x) is **increasing**, what is the sign of the derivative? Look at the difference quotient:

$$\frac{f(x+h)-f(x)}{h}$$

The derivative is a two-sided limit, so we have two cases:

Case 1: *h* is positive.
So
$$x + h > x$$
, which implies $f(x + h) - f(x) > 0$.
So $\frac{f(x + h) - f(x)}{h} > 0$.

If f(x) is **increasing**, what is the sign of the derivative? Look at the difference quotient:

$$\frac{f(x+h)-f(x)}{h}$$

The derivative is a two-sided limit, so we have two cases:

Case 1: *h* is positive.
So
$$x + h > x$$
, which implies $f(x + h) - f(x) > 0$.
So $\frac{f(x + h) - f(x)}{h} > 0$.

Case 2: h is negative. So x + h < x, which implies f(x + h) - f(x) < 0. So $\frac{f(x + h) - f(x)}{h} > 0$.

If f(x) is **increasing**, what is the sign of the derivative? Look at the difference quotient:

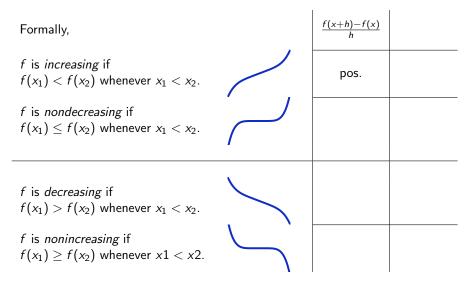
$$\frac{f(x+h)-f(x)}{h}$$

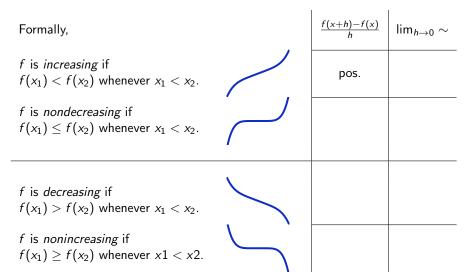
The derivative is a two-sided limit, so we have two cases:

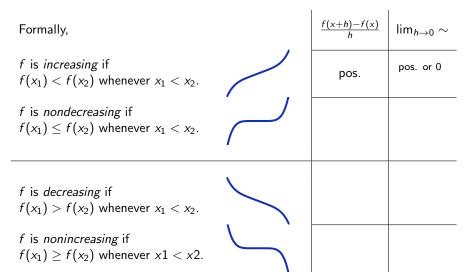
Case 1: *h* is positive.
So
$$x + h > x$$
, which implies $f(x + h) - f(x) > 0$.
So $\frac{f(x + h) - f(x)}{h} > 0$.

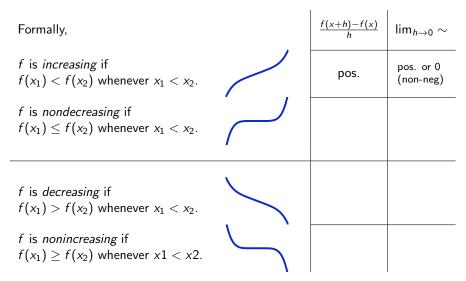
Case 2: *h* is negative. So x + h < x, which implies f(x + h) - f(x) < 0. So $\frac{f(x + h) - f(x)}{h} > 0$.

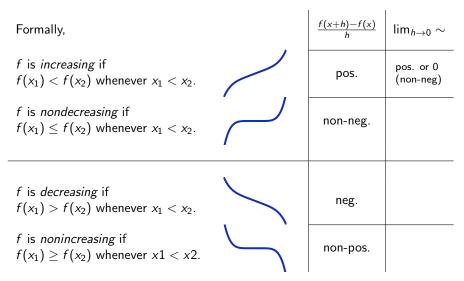
So the difference quotient is positive!



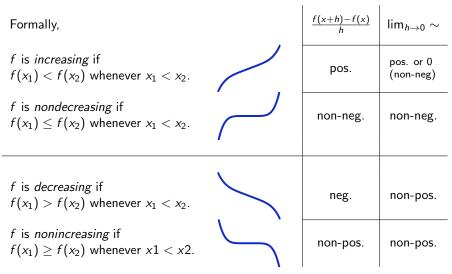








Formally,	$\frac{f(x+h)}{h}$	$\left \lim_{h\to 0} \right = \lim_{h\to 0} \infty$
f is increasing if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$.	ро	pos. or 0 (non-neg)
f is nondecreasing if $f(x_1) \le f(x_2)$ whenever $x_1 < x_2$.	non-	neg. non-neg.
f is decreasing if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$.	ne	g. non-pos.
f is nonincreasing if $f(x_1) \ge f(x_2)$ whenever $x1 < x2$.	non-	pos. non-pos.



So we can calculate some of the "shape" of f(x) by knowing when its derivative is positive, negative, and 0!

On what interval(s) is the function $f(x) = x^3 + x + 1$ increasing or decreasing?

Step 1: Calculate the derivative.

Step 2: Decide when the derivative is positive, negative, or zero.

On what interval(s) is the function $f(x) = x^3 + x + 1$ increasing or decreasing?

Step 1: Calculate the derivative.

$$f'(x) = 3x^2 + 1$$

Step 2: Decide when the derivative is positive, negative, or zero.

On what interval(s) is the function $f(x) = x^3 + x + 1$ increasing or decreasing?

Step 1: Calculate the derivative.

$$f'(x) = 3x^2 + 1$$

Step 2: Decide when the derivative is positive, negative, or zero. f'(x) is always positive!

On what interval(s) is the function $f(x) = x^3 + x + 1$ increasing or decreasing?

Step 1: Calculate the derivative.

$$f'(x) = 3x^2 + 1$$

Step 2: Decide when the derivative is positive, negative, or zero. f'(x) is always positive!

Step 3: Bring that information back to f(x). f(x) is always increasing!

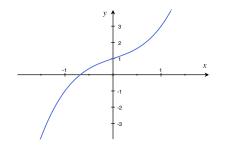
On what interval(s) is the function $f(x) = x^3 + x + 1$ increasing or decreasing?

Step 1: Calculate the derivative.

$$f'(x) = 3x^2 + 1$$

Step 2: Decide when the derivative is positive, negative, or zero. f'(x) is always positive!

Step 3: Bring that information back to f(x). f(x) is always increasing!



Find the intervals on which the function $f(x) = 2x^3 - 6x^2 - 18x + 1$ is increasing and those on which it is decreasing.

Step 1: Calculate the derivative.

Step 2: Decide when the derivative is positive, negative, or zero.

Find the intervals on which the function $f(x) = 2x^3 - 6x^2 - 18x + 1$ is increasing and those on which it is decreasing.

Step 1: Calculate the derivative. $f'(x) = 6x^2 - 12x - 18$

Step 2: Decide when the derivative is positive, negative, or zero.

Find the intervals on which the function $f(x) = 2x^3 - 6x^2 - 18x + 1$ is increasing and those on which it is decreasing.

Step 1: Calculate the derivative. $f'(x) = 6x^2 - 12x - 18 = 6(x - 3)(x + 1)$ **Step 2:** Decide when the derivative is positive, negative, or zero.

Find the intervals on which the function $f(x) = 2x^3 - 6x^2 - 18x + 1$ is increasing and those on which it is decreasing.

Step 1: Calculate the derivative. $f'(x) = 6x^2 - 12x - 18 = 6(x - 3)(x + 1)$

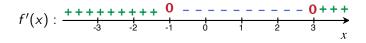
Step 2: Decide when the derivative is positive, negative, or zero.

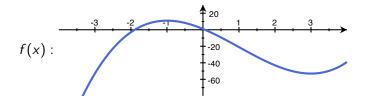
Find the intervals on which the function $f(x) = 2x^3 - 6x^2 - 18x + 1$ is increasing and those on which it is decreasing.

Step 1: Calculate the derivative. $f'(x) = 6x^2 - 12x - 18 = 6(x - 3)(x + 1)$

Step 2: Decide when the derivative is positive, negative, or zero.

Step 3: Bring that information back to f(x). f(x) is increasing, then decreasing, then increasing.





If f is continuous on a closed interval [a, b], then there is a point in the interval where f is largest (maximized) and a point where f is smallest (minimized).

If f is continuous on a closed interval [a, b], then there is a point in the interval where f is largest (maximized) and a point where f is smallest (minimized).

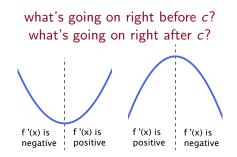
The maxima or minima will happen either

- 1. at an endpoint, or
- 2. at a **critical point**, a point *c* where f'(c) = 0

If f is continuous on a closed interval [a, b], then there is a point in the interval where f is largest (maximized) and a point where f is smallest (minimized).

The maxima or minima will happen either

- 1. at an endpoint, or
- 2. at a **critical point**, a point *c* where f'(c) = 0



For the function $f(x) = 2x^3 - 6x^2 - 18x + 1$, let us find the points in the interval [-4, 4] where the function assumes its maximum and minimum values.

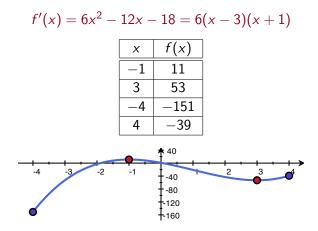
$$f'(x) = 6x^2 - 12x - 18 = 6(x - 3)(x + 1)$$

For the function $f(x) = 2x^3 - 6x^2 - 18x + 1$, let us find the points in the interval [-4, 4] where the function assumes its maximum and minimum values.

 $f'(x) = 6x^2 - 12x - 18 = 6(x - 3)(x + 1)$

x	f(x)
-1	11
3	53
-4	-151
4	-39

For the function $f(x) = 2x^3 - 6x^2 - 18x + 1$, let us find the points in the interval [-4, 4] where the function assumes its maximum and minimum values.



Rolle's Theorem

Theorem

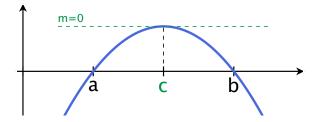
Suppose that the function f is

continuous on the closed interval [a, b],

differentiable on the open interval (a, b), and

a and b are both **roots** of f.

Then there is at least one point c in (a, b) where f'(c) = 0.



(In other words, if g didn't jump, then it had to turn around)

Remember: Newton's method helped us fine roots of functions.

Pick an x_0 to start. To get x_{i+1} , follow the tangent line to f(x) at x_i down to it's x-intercept. The x_i 's get closer and closer to a root of f.

But how do we know when we've found all of them?

Remember: Newton's method helped us fine roots of functions.

Pick an x_0 to start. To get x_{i+1} , follow the tangent line to f(x) at x_i down to it's x-intercept. The x_i 's get closer and closer to a root of f.

But how do we know when we've found all of them? For example: Find the roots of $f(x) = x^5 - 3x + 1$.

Remember: Newton's method helped us fine roots of functions.

Pick an x_0 to start. To get x_{i+1} , follow the tangent line to f(x) at x_i down to it's x-intercept. The x_i 's get closer and closer to a root of f.

But how do we know when we've found all of them? For example: Find the roots of $f(x) = x^5 - 3x + 1$. If x_0 is... -2 -1 0 1 2 then the x_i 's get closer to... -1.3888 -1.3888 0.3347 1.2146 1.2146

Remember: Newton's method helped us fine roots of functions.

Pick an x_0 to start. To get x_{i+1} , follow the tangent line to f(x) at x_i down to it's x-intercept. The x_i 's get closer and closer to a root of f.

But how do we know when we've found all of them?							
For example	: Find the ro	ots of $f(x$	$x) = x^5 - x^5$	3x + 1.			
If <i>x</i> ₀ is	-2	-1	0	1	2		
then the x_i 's get closer to							
	-1.3888	-1.3888	0.3347	1.2146	1.2146		
$x_0 =9$	8	7	6	.5	.6	.7	
$x_i \rightarrow -1.5$	3 1.2	1.2	0.3	0.3	0.3	0.3	

Remember: Newton's method helped us fine roots of functions.

Pick an x_0 to start. To get x_{i+1} , follow the tangent line to f(x) at x_i down to it's x-intercept. The x_i 's get closer and closer to a root of f.

But how do we know when we've found all of them?							
For exa	mple: F	ind the ro	ots of $f(x)$	$) = x^{5} - $	3x + 1.		
If x_0 is	5	-2	-1	0	1	2	
then t	he x _i 's g	get closer ⁻	to				
		-1.3888	-1.3888	0.3347	1.2146	1.2146	
$x_0 =$	9	8	7	6	.5	.6	.7
$x_i \rightarrow$	-1.3	1.2	1.2	0.3	0.3	0.3	0.3
$x_0 =$	-10	-20	-50	-100	-1000	-1000	0
$x_i \rightarrow$	-1.3	-1.3	-1.3	-1.3	-1.3	-1.3	

Remember: Newton's method helped us fine roots of functions.

Pick an x_0 to start. To get x_{i+1} , follow the tangent line to f(x) at x_i down to it's x-intercept. The x_i 's get closer and closer to a root of f.

But how do we know when we've found all of them?							
For exa	mple: Fi	nd the ro	ots of $f(x)$	$x) = x^5 - x^5$	3x + 1.		
If x_0 is	5	-2	-1	0	1	2	
then t	he x _i 's g	et closer ⁻	to				
		-1.3888	-1.3888	0.3347	1.2146	1.2146	
$x_0 =$	9	8	7	6	.5	.6	.7
$x_i ightarrow$	-1.3	1.2	1.2	0.3	0.3	0.3	0.3
$x_0 =$	-10	-20	-50	-100	-1000	-100	00
$x_i \rightarrow$	-1.3	-1.3	-1.3	-1.3	1.3.	1.3.	
$x_0 =$	10	20	50	100	1000	10000	100000
$x_i ightarrow$	1.2	1.2	1.2	1.2	1.2	1.2	1.2

Remember: Newton's method helped us fine roots of functions.

Pick an x_0 to start. To get x_{i+1} , follow the tangent line to f(x) at x_i down to it's x-intercept. The x_i 's get closer and closer to a root of f.

But how do we know when we've found all of them?							
For exa	mple: Fi	nd the ro	ots of $f(x)$	$x) = x^5 - x^5$	3x + 1.		
If x_0 is	5 ·	-2	-1	0	1	2	
then t	he x _i 's g	et closer ⁻	to				
		-1.3888	-1.3888	0.3347	1.2146	1.2146	
$x_0 =$	9	8	7	6	.5	.6	.7
$x_i ightarrow$	-1.3	1.2	1.2	0.3	0.3	0.3	0.3
$x_0 =$	-10	-20	-50	-100	-1000	-100	00
$x_i \rightarrow$	-1.3	-1.3	-1.3	-1.3	1.3.	-1.3.	
$x_0 =$	10	20	50	100	1000	10000	100000
$x_i ightarrow$	1.2	1.2	1.2	1.2	1.2	1.2	1.2

After plugging in lots of x_0 's, we've only found three roots. But there could be up to 5! How do we know we're not just very unlucky?

Step 1: Show that there are at *most* three roots.

Step 2: Show that there are at *least* three roots.

- **Step 1:** Show that there are at *most* three roots.
- **Step 2:** Show that there are at *least* three roots.
 - Two methods:
 - $\left(1\right)$ Use Newton's method to root out three roots, or
 - (2) find four points f(x) which alternate signs, and use the intermediate value theorem.

Step 1: Show that there are at *most* three roots.

Step 2: Show that there are at *least* three roots.

Two methods:

(1) Use Newton's method to root out three roots, or

(2) find four points f(x) which alternate signs, and use the

intermediate value theorem.

(IVT: If f(x) is cont. and f(a) < C < f(b), then there's a c btwn. a and b where f(c) = C)

Step 1: Show that there are at *most* three roots.

Step 2: Show that there are at *least* three roots.

Two methods:

(1) Use Newton's method to root out three roots, or

(2) find four points f(x) which alternate signs, and use the

intermediate value theorem.

(IVT: If f(x) is cont. and f(a) < C < f(b), then there's a *c* btwn. *a* and *b* where f(c) = C) On your own:

 Do an analysis of increasing/decreasing on f(x). How many times does f(x) turn around? Conclude: what is an upper bound on the number of roots?

2. Find the heights of the critical points.

Using the intermediate value theorem, what is a lower bound on the number of roots? Can you do better if you also find the height of the function at a big positive number and a big negative number?

- 3. Conclude: How many real roots does f(x) have?
- 4. Bonus:

Using the approximations from before, sketch a graph.